

AFRL-RH-WP-TR-2014-0134

Affect Response to Simulated Information Attack during Complex Task Performance

Capt. Erik Armbrust, Dr. Gina Thomas, Ms. Krystal Thomas, & Lt. Monika Eckold Applied Neuroscience Branch, Warfighter Interface Division

Dr. Michael W. Haas
Department of Systems Engineering and Management,
Air Force Institute of Technology

December 2014

Interim Report

Distribution A: Approved for public release; distribution unlimited.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
711 HUMAN PERFORMANCE WING
HUMAN EFFECTIVENESS DIRECTORATE
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433
AIR FORCE MATERIEL COMMAND
UNITED STATES AIR FORCE

Notice and Signature Page

Using Government drawings, specifications, or other data included in this document for any purpose other than Government procurement does not in any way obligate the U.S. Government. The fact that the Government formulated or supplied the drawings, specifications, or other data does not license the holder or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any patented invention that may relate to them.

Qualified requestors may obtain copies of this report from the Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-RH-WP-TR-2014-0134 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

//signed//
KRYSTAL M. THOMAS
Work Unit Manager
Applied Neuroscience Branch

//signed// SCOTT M. GALSTER Chief, Applied Neuroscience Branch Warfighter Interface Division

//signed//
WILLIAM E. RUSSELL
Chief, Warfighter Interface Division
Human Effectiveness Directorate
711 Human Performance Wing
Air Force Research Laboratory

This report is published in the interest of scientific and technical information exchange and its publication does not constitute the Government's approval or disapproval of its ideas or findings.

REPORT DOCUMI	ENTATION PAGE	Form Approved OMB NO. 0704-0188		
completing and reviewing the collection of information. Send comments regard Services, Directorate for information Operations and Reports (0704-0188), 121	ing this burden estimate or any other aspect of this collection of inform 5 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Re	s, searching existing data sources, gathering and maintaining the data needed, and ation, including suggestions for reducing this burden, to Washington Headquarters espondents should be aware that notwithstanding any other provision of law, no r. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.		
1. REPORT DATE (DD-MM-YY)	2. REPORT TYPE	3. DATES COVERED (From – To)		
02-12-2014	Interim	October 2011 – September 2014		
4. TITLE AND SUBTITLE		5a. CONTRACT NUMBER		
		IN_HOUSE		
Affect Response to Simulated Information Att	ack during Complex Task Performance	5b. GRANT NUMBER		
•		5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S) *Capt. Erik Armbrust; *Gina Thomas; *Kry	vetal Thomas: *I t. Monika Fekold	5d. PROJECT NUMBER		
^Michael W. Haas	stai Thomas, Et. Womka Eckold	5e. TASK NUMBER		
		5f. WORK UNIT NUMBER		
		H0AE (2311RC11)		
7. PERFORMING ORGANIZATION NAME(S) A *Air Force Research Laboratory, 2255 H St ^Air Force Institute of Technology, 2950 H 7765	,WPAFB,OH 45433-7022	8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING / MONITORING AGENCY NA	ME(S) AND ADDRESS(ES)	10. SPONSORING/MONITORING		
Air Force Materiel Command, Air Force Re	esearch Laboratory, 711th Human	AGENCY ACRONYM(S)		
Performance Wing, Human Effectiveness D	virectorate, Warfighter Interface	711 th HPW/RHCPA		
Division, Wright-Patterson AFB OH 45433		11. SPONSORING/MONITORING AGENCY		
		REPORT NUMBER(S)		
		AFRL-RH-WP-TR-2014-0134		
12. DISTRIBUTION/AVAILABILITY STATEME	NT			
Distribution A: Approved for public rel	lease; distribution unlimited.			
13. SUPPLEMENTARY NOTES				
88 ABW Cleared 12/22/2014; 88ABW	'-2014-6038; Report contains color.			
14. ABSTRACT (Maximum 200 words)				
		llowing 4 research questions: 1) To what extent		
does performance of a complex task differ who	en affected by manipulation of underlying	information elements and can an affective		
computing technique mitigate these effects: 2) To what extent are an individual's traits associated with differing abilities across				

An experimental facility was developed and an experiment performed to evaluate the following 4 research questions: 1) To what extent does performance of a complex task differ when affected by manipulation of underlying information elements and can an affective computing technique mitigate these effects; 2) To what extent are an individual's traits associated with differing abilities across individuals to "fight through" an informational attack; 3) Is an individual's cognitive state associated with differing levels of coping with additional demands created by informational attack; and 4) Can an individual's physiological state accurately reflect differences in emotional state caused by informational attack?

The experimental facility, the Cyber Affect Laboratory (CAL), supported data collection for a single participant and a remoted research to monitor the participant and administer written material for subjective reporting when needed. The CAL integrated behavioral and physiological measurement equipment as well as hosting a multiple task battery, the AF-MATB, with visual displays and convention computer controls. AF-MATB was modified to simulate several persistent information attacks during which the participant was required to continue to operate the multiple tasks. In addition, affective computing techniques were utilized to further understand how induced affect could be used to mitigate the effects of the informational attacks.

15. SUBJECT TERMS

Affective Computing, crew systems, Human Systems Integration, Human-computer Interaction, cyberspace, information warfare

16. SECURITY	CLASSIFICATION	NOF:	17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON (Monitor) Krystal Thomas
a. REPORT Unclassified	b. ABSTRACT Unclassified	c. THIS PAGE Unclassified	SAR	134	19b. TELEPHONE NUMBER (Include Area Code)

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39-18

TABLE OF CONTENTS

		rage
LIST	OF FIGURES	iv
LIST	OF TABLES	v
ACK	NOWLEDGEMENTS	vi
1.0	SUMMARY	1
1.1	MISSION ASSURANCE	1
1.2	DEFENSIVE/OFFENSIVE PERFORMANCE AUGMENTATION	1
1.3	Cyber Affect Laboratory	2
2.0	INTRODUCTION	2
2.1	Purpose	2
2.2	Affect	3
2.3	AFFECT-PERFORMANCE-SITUATION AWARENESS	3
2.4	AF-MATB	4
2.5	CYBER ATTACK SIMULATION	7
2.6	Measures	8
2.7	EMOTION ELICITATION	13
3.0	METHODS, ASSUMPTIONS, AND PROCEDURES	13
3.1	PARTICIPANTS	13
3.2	DEMOGRAPHIC DESCRIPTORS	14
3.3	APPARATUS AND STIMULI	15
3.4	Procedure	18
4.0	RESULTS AND DISCUSSION	22
4.1	TASK PERFORMANCE ANALYSES OF INDEPENDENT VARIABLE EFFECTS	23
4.2	ANALYSES OF PARTICIPANT ATTRIBUTE AFFECT ON TASK PERFORMANCE	25
4.3	EFFECTS OF INDEPENDENT VARIABLES ON PHYSIOLOGICAL MEASURES	28
4.4	SUBJECTIVELY-REPORTED AFFECT MEASURES ANALYSES OF INDEPENDENT VA	RIABLE
Eff	ECTS	
4.5	ATTENTION TO SYSTEM CHANGE/ATTACK VARIATIONS	
4.6	EFFECTS OF INDEPENDENT VARIABLES ON SUBJECTIVE WORKLOAD	41
5.0	CONCLUSIONS	43
5.1	QUESTION 1 - TO WHAT EXTENT DOES PERFORMANCE OF A COMPLEX TASK DIFF	ER WHEN
AFF	ECTED BY MANIPULATION OF UNDERLYING INFORMATION ELEMENTS AND CAN AN A	AFFECTIVE
CON	MPUTING TECHNIQUE MITIGATE THESE EFFECTS?	44

5.2 QUESTION 2 - TO WHAT EXTENT ARE AN INDIVIDUAL'S TRAITS ASSOCIATED WITH	
DIFFERING ABILITIES ACROSS INDIVIDUALS TO "FIGHT THROUGH" AN INFORMATIONAL	
ATTACK?	44
5.3 QUESTION 3 - IS AN INDIVIDUAL'S COGNITIVE STATE ASSOCIATED WITH DIFFERING	3
LEVELS OF COPING WITH ADDITIONAL DEMANDS CREATED BY INFORMATIONAL ATTACK?	45
5.4 QUESTION 4 - CAN AN INDIVIDUAL'S PHYSIOLOGICAL STATE ACCURATELY REFLEC	CT
DIFFERENCES IN EMOTIONAL STATE CAUSED BY INFORMATIONAL ATTACK?	
5.5 MISCELLANEOUS RELEVANT ANALYSES	
5.6 Future Research	49
BIBLIOGRAPHY	50
APPENDIX A. FILM RESPONSE QUESTIONNAIRE	56
APPENDIX B. DEMOGRAPHICS QUESTIONNAIRE	57
APPENDIX C. SITUATIONAL TEST OF EMOTION MANAGEMENT (STEM)	
APPENDIX D. FIVE-FACTOR MODEL IPIP-NEO PERSONALITY INDEX	66
APPENDIX E. NASA TASK LOAD INDEX (TLX)	72
APPENDIX F. PANAS-X GENERAL MOOD STATE INDICATOR	73
APPENDIX G. SELF-REPORT AFFECT GRID & SLIDER SCALES	74
APPENDIX H. COGNITIVE TEST EXAMPLES	75
APPENDIX I. DEBRIEFING QUESTIONNAIRE	80
APPENDIX J. PERSONALITY & SCORE CORRELATION MATRIX	81
APPENDIX K. EMOTIONAL REGULATION ABILITY & SCORE CORRELATI	ION
MATRIX	83
APPENDIX L. COGNITIVE TESTING IED & SCORE CORRELATION MATRI	X 85
APPENDIX M. COGNITIVE TESTING SOC & SCORE CORRELATION MATR	IX 87
APPENDIX N. COGNITIVE TESTING CRT & SCORE CORRELATION MATR	IX 89
APPENDIX O. RESULTS OF STASTICAL ANALYSES	91
LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS	126

LIST OF FIGURES

Pag	ge
Figure 1. Overlapping affect	. 3
FIGURE 2. AF_MATB	. 4
FIGURE 3. USER PERFORMING WELL IN BOTH TASKS	. 6
FIGURE 4. USER PERFORMING MODERATELY IN BOTH TASKS	. 6
FIGURE 5. USER PERFORMING POORLY IN BOTH TASKS	. 7
FIGURE 6. PUMP ATTACK CONDITION, INVERTING LIGHT FUNCTION ON PUMPS 1, 5, AND 7	
FIGURE 7. AFFECT GRID (RUSSELL, WEISS, & MENDELSOHN, 1989)	. 9
FIGURE 8. CYBER AFFECT LABORATORY	16
FIGURE 9. PERFORMANCE AS A FUNCTION OF ATTACK TYPE, VIDEO VALENCE, AND SESSION	
Number2	25
FIGURE 10. RELATIVE SCORE AS A FUNCTION OF AGE AND EDUCATIONAL LEVEL	26
FIGURE 11. PARTICIPANT TRAITS INFLUENCED PERFORMANCE	27
FIGURE 12. EMOTIONAL MANAGEMENT AND ATTACK TYPE AFFECTED PERFORMANCE	28
FIGURE 13. TYPICAL INDIVIDUAL TRIAL SEQUENCE AND TIMING	29
FIGURE 14. ATTACK TYPE AND VIDEO VALENCE INFLUENCE HEART RATE	30
FIGURE 15. CHANGE IN HEART RATE DURING VIDEO CLIP PRESENTATION	31
FIGURE 16. CHANGE IN HEART RATE DURING VIDEO CLIP PRESENTATION AND TRIAL	32
FIGURE 17. PULSE TRANSIT TIMES VARY WITH ATTACK TYPE, VIDEO CLIP VALENCE, AND	
Session	33
Figure 18. Change in Pulse Transit Time during Video Clip Presentation and Trial \dots 3	33
FIGURE 19. ELECTRO DERMAL ACTIVITY VARIES WITH ATTACK TYPE AND VIDEO CLIP VALENCE	,
	34
FIGURE 20. CHANGE IN ELECTRO DERMAL ACTIVITY DURING VIDEO CLIP PRESENTATION AND	
Trial	35
FIGURE 21. AROUSAL, MEASURED WITH THE SLIDER, VARIED WITH ATTACK TYPE	36
FIGURE 22. VALENCE, MEASURED WITH THE SLIDER, VARIED WITH ATTACK TYPE	
$Figure\ 23.\ Arousal\ and\ Valence,\ Measured\ with\ the\ Affect\ Grid,\ Varied\ with\ Attack and\ A$	K
AND VIDEO CLIP	37
FIGURE 24. PANAS-N AFFECT MEASURED PRE AND POST TASK	38
FIGURE 25. PANAS-P AFFECT MEASURED PRE AND POST TASK	39
FIGURE 26. TASK LOAD INDEX OF PERFORMANCE, EFFORTS, AND FRUSTRATION	1 2
FIGURE 27. TASK LOAD INDEX OF MENTAL DEMAND, TEMPORAL DEMAND, AND PHYSICAL	
Demand2	1 2

LIST OF TABLES

	Page
Table 1. Demographic Frequencies	14
Table 2. Demographic Descriptors	15
TABLE 3. AFFECT STATE INDUCTION CLIPS	17
Table 4. Treatment List	18
TABLE 5. DESCRIPTORS OF INDEPENDENT, DEPENDENT, AND DERIVED VARIABLES	22
Table 6. Attribute-type variables	23
TABLE 7. SYSTEM CHANGE RECOGNITION GROUP STATISTICS	40
TABLE 8. SYSTEM CHANGE RECOGNITION GROUP DIFFERENCES	41

ACKNOWLEDGEMENTS

The authors wish to thank Mr. Johnathan Jackson (Sumaria) and Ms. Cynthia Schindler (Sumaria) for their considerable efforts in the initiation of this study. Funding for this work was provided by the Air Force Office of Scientific Research.

1.0 SUMMARY

1.1 Mission Assurance

A key scientific challenge for the Air Force is the discovery of enhanced methods to reduce our vulnerability to attack in, and through, the cyberspace domain. Our adversaries are operating within our information networks and the resources required to mount offensive actions in, and through, cyberspace remain significantly lower than the resources required to defend against those same actions. The philosophy behind our defense of cyberspace has moved from *information* assurance to *mission* assurance. The ability of warfighters to build and maintain situational awareness is a key design characteristic of and training objective for modern weapon systems and is essential for mission assurance. Attacks in and through cyberspace, when targeted effectively, can significantly degrade the situational awareness of warfighters.

Normally, specific knowledge regarding targeted information resources is derived from postattack forensic malware analyses and intelligence reports. These are typically time-intensive efforts leaving hours, days, or even weeks between the detection of a cyberspace-based attack and the knowledge of the information resource upon which the malware operated. During these periods of uncertainty, individual warfighters and war-fighting teams who are dependent on information flowing directly or indirectly from the malware-targeted resources are vulnerable to breakdowns in situational awareness resulting in error-prone and delayed decision-making. This could be a deliberate D5 effect (deceive, deny, disrupt, degrade and destroy) or non-deliberate attack by hostile actors, either of which act to degrade or disrupt friendly operations.

This research effort hopes to increase the capability to maintain mission assurance during attacks in and through cyberspace by augmenting the warfighter's ability to operate with uncertain information quality which could be actively influenced by malicious actors. Because existing research in this area is so limited, this study will provide insight into potential limitations of situational awareness during cyber attacks, providing a foundation for understanding the impact of affect on critical task completion.

1.2 Defensive/Offensive Performance Augmentation

The main goal of this research is to benefit our nation's defensive ability and offensive targeting systems by affording us first glimpses at predicting what specific cyber behaviors or patterns of behaviors may trigger productive or destructive affect, and what cognitive or personality traits are predictive of better or worse performance under varied affective influence in these contested environments. Defensive augmentation of the warfighter force could be accomplished through additional training targeting affective vulnerabilities discovered from these results, and a better trait/cognitive screening or vectoring process for filling positions critical to mission-assurance. Future applications of this knowledge could aid development of systems that unobtrusively detect affect states, automatically change the interface to best suit that state, vector outside resources, add personnel, or auto-engage strategies that would enable performance augmentation on a system-wide scale. Offensive targeting systems would also be informed by this research, giving insight into what affect states are elicited by certain information attacks, and how those

affect states and attacks interact to degrade human performance. Further, it is possible that certain traits are related to a subject's tendency to experience deleterious affect states which could be used as offensive targeting criteria.

1.3 Cyber Affect Laboratory

The Air Force Office of Scientific Research awarded funding to Applied Neuroscience Branch, 711th Human Performance Wing (711HPW/RHCP) to begin research focused on defending the situational awareness and decision-making of individuals operating under information attack through cyberspace. The research program was separated into three distinct, yet interrelated pathways or phases: 1) examining how situational awareness, affect, and trait characteristics interact with human performance during simulated cyberspace attacks and capturing that understanding in a model; 2) determining how effectively reactive affective computing techniques may be utilized to manipulate affect during task performance, based on predictions derived from that model; and 3) understanding how emotion, as manipulated using reactive affective computing techniques, may be used to mitigate situational awareness deficits due to cyberspace-based attacks. This is the first study in the initial phase of general research examining how situational awareness, affect, and trait characteristics interact with human performance during cyberspace attacks in the physical and information dimensions. As a part of this research program, a new facility, the Cyber Affect Laboratory was developed.

2.0 INTRODUCTION

2.1 Purpose

The purpose of this study was to systematically examine emotional responses to information manipulation of key task parameters during task performance. In essence, to determine an individual's ability to "fight through" an informational attack, or in other words, to determine an individual's resiliency. Operator state was manipulated using emotional stimulation portrayed through the presentation of video segments. The effect of emotions on situational awareness and decision-making (as reflected by a performance score) under simulated cyber attack was analyzed. By examining participants' responses to the simulated cyber-based informational attacks, an attempted to determine to what extent an individual's traits, such as personality, cognitive ability, and emotional responsiveness were related to one's vulnerability, as reflected by reduced task performance and the ability to adapt and properly respond to the attacks.

2.1.1 Research Questions

To what extent does performance of a complex task differ when affected by manipulation of underlying information elements and can an affective computing technique mitigate these effects?

To what extent are an individual's traits associated with differing abilities across individuals to "fight through" an informational attack?

Is an individual's cognitive state associated with differing levels of coping with additional demands created by informational attack?

Can an individual's physiological state accurately reflect differences in emotional state caused by informational attack?

2.2 Affect

Affect has been defined in the literature as a general mental state that involves evaluative feelings, including the feelings of internal pleasantness and how much the person likes or dislikes a situation (Parkinson, Totterdell, Brinner, & Reynolds, 1996). The term 'affect' entails two distinct constructs, emotion and mood. Emotion is the instantaneous affect felt toward or about an object or immediate circumstance, which is temporary and transient in nature (Davidson, On emotion, mood and related affective constructs, 1994; Gray & Watson, 2001; Watson & Clark, 1994). Mood is the more durable affect state which lasts over a slightly longer period and is not directed toward or resulting from any single object or circumstance (Tellegen, 1985; Watson, 2000; Watson & Clark, 1994). There are also two larger categories of affect: Trait and State. State affect includes the short-lived emotions and moods, while Trait affect is the general tendency to experience certain affect states more than others over a very long period (Tellegen, 1985; Watson, 2000). Figure 1 illustrates the overlapping nature of affect dimensions.

Figure 1. Overlapping affect

2.3 Affect-Performance-Situation Awareness

Research on the effects of emotion on performance during simulated cyber attack is sparse at best. Existing research does seem to indicate that negative affect combined with high arousal increases the probability of performance or judgment error (for example, see (Kleider, Parrott, & King, 2010). Some research (Abele, Silvia, & Zöller-Utz, 2005; Gilbert & Christopher, 2010) focuses the relationships between affect and attention in terms of inward vs. outward locus of attention. In general, negative affect seems to have a tendency to focus attention inward. Hirshfield (2009) has studied how higher-level mental constructs, such as workload, may be affected by levels of valence and arousal in six emotional categories of happiness, sadness, fear, anger, surprise and disgust by using the neurologic measures of electroencephalography and near

infrared spectroscopy and has begun to utilize this same methodology on the mental constructs of trust and suspicion.

2.4 AF-MATB

The Multi-Attribute Task Battery (MATB) is a software application developed by Langley Research Center at NASA in 1992. Used in an array of international studies since its creation, MATB has become a recognized tool in psychological and psycho-physiological research. Recently, the Air Force Research Laboratory has modified the original software in order to increase compatibility on newer operating systems while keeping its original design intact, renaming the application AF_MATB. Although AF_MATB offers many useful features, for this experiment, AF_MATB has been modified once again in order to allow for the simulation of cyberspace-based attacks while the user operates the software. Unless specified otherwise, AF_MATB will hereafter refer to this most recent version with cyber attack simulation.

Figure 2. AF_MATB

Visually, AF_MATB consisted of three display frames, which together represent two subtasks: Tracking and Resource Management. The top display frame represents the Tracking subtask. The objective of this task was to hold a reticule as closely to a center crosshair as possible.

Throughout the duration of the trial, the reticule randomly tends to one of eight directions (north, north-west, west, etc.) changing tendency often. With the manipulation of a joystick, the user could overcome and correct this movement, allowing the user to bring the reticule back to the center.

The bottom display frame represents the Resource Management subtask. The objective of this task was to maintain the volumes of two fuel tanks (Tank A and Tank B) as closely to a predefined objective level as possible (2500). Fuel is consumed regularly throughout the duration of a trial, decreasing the volume of each tank. To counteract this, fuel must be pumped into Tanks A and B indirectly from two unlabeled bottomless tanks. The user operates a set of eight pumps with the keyboard in order to balance the fuel being consumed with the fuel being pumped into Tanks A and B. Each pump constantly transfers fuel in the direction denoted by its arrow and at the rate displayed next to its corresponding number in the Pump Status frame (bottom right frame). When a pump is ON, a fixed, predefined flow rate is displayed and when off it becomes zero. When a pump fills a tank completely, the pump automatically disengages and must be re-engaged as necessary. Under normal operating conditions, a colored (green, yellow, or red) pump denotes ON and black denotes OFF (see below, Cyber Attack Simulation). A pump can be switched between ON and OFF by pressing its corresponding number on the keyboard or by clicking on it in the AF_MATB window. Pumps 2, 4, 5, and 6 are relatively slow pumps, while 1 & 3 operate extremely quickly. The fuel tank size of C & D was intended to be small so that they would quickly empty when pumps 1 & 3 were engaged. This was done in order to focus more attention on the bottom frame in an attempt to equally split the participant's attention between tracking and resource management. Simply turning on pumps 2 & 4 would not be sufficient to maintain the objective 2500 level. Use of pumps 1, 3, 5, and 6 would be continually required to maintain performance. Flow rates were equal for 2 & 4, and for 5 & 6. The optimal strategy explained to each participant was to permanently engage 2 & 4, then briefly 1 & 3, then refilling tanks C & D via pumps 5 & 6, then repeat process repeatedly to maintain levels as necessary.

During each trial, AF_MATB maintains a real-time user performance score for each subtask (frame) as well as a total user performance score, which is a calculated average of the two subtask scores. Each score is a percentage, with "100%" representing perfect performance and lower percentages representing correspondingly worse performance. The subtask percentage scores are displayed in the middle of each subtask frame. The overall performance score is displayed on the bottom right side of the top frame, and normally ranges +/- 100,000 points in a one-minute task. In addition to the displayed percentages, task performance meta-information is shown through the color of the displays itself. Each subtask frame changes color independent of the other when a performance threshold is crossed. The three thresholds are 0%—50% (red), 51%—75% (yellow), and 76%—100% (green).

Figure 3. User performing well in both tasks

Figure 4. User performing moderately in both tasks

Figure 5. User performing poorly in both tasks

2.5 Cyber Attack Simulation

Four simulated cyber attack conditions were used during this experiment. The four conditions were 1) no attack is occurring (N), 2) an attack on the tracking task is occurring (T), 3) an attack on the resource management task is occurring (F), and 4) an attack on the display of total points is occurring (S).

Attack condition 2(T) – Simulated attack on the tracking task

During this condition, the response of the joystick was altered such that the reticule became significantly less sensitive to joystick input than in attack condition 1 where no attack occurred, and the Y-axis input was inverted. Attack condition 2 began after 10 seconds trial duration and will cause the tracking task to become much more difficult to operate. It was anticipated that the participant would need to allocate more cognitive resources to the tracking task.

Attack condition 3(F) – Simulated attack on the resource management task

During this condition, the ON/OFF colors of pumps 1, 5, and 7 were inverted such that after 10 seconds trial duration they would appear black when ON and normal colored when OFF, as opposed to appearing black when OFF and normal colored when ON as they do during attack condition 1.

Figure 6. Pump attack condition, inverting light function on pumps 1, 5, and 7

Attack condition 4(S) – Simulated attack on the display of total points

During this condition, the display of total points did not increase predictably in correlation with the task performance percentages shown on the tracking and resource management display windows. Essentially, the reported score to the participant was 80% of the true value being scored, leading the participant to believe they were not performing as well as previously, assuming some participants paid attention to the score differences. This effect was predicted to be greater during the second session of trials (9-16) when participants had more experience and remembered what a 'normal' score was during the first session. This attack was in opposition to the operation of the total point display during attack condition 1. During attack condition 1, the display of total points increased at a rate that correlated with the percentage of task performance shown on the tracking task and the resource management windows.

2.6 Measures

NASA TLX

The NASA Task Load Index (TLX), a standard workload assessment (~ less than 2 minutes in duration), was administered to participants after the task was completed. The NASA-TLX (Hart & Staveland, 1988) assesses mental demands, physical demands, temporal demands, a user's performance, effort, and frustration (APPENDIX E).

PANAS-X

The PANAS-X, or Positive and Negative Affect Scale – Expanded is a 60 question measure of emotion and mood in participants (APPENDIX F). The scale measures General Affect (Negative & Positive), and 11 discrete emotions, Fear, Hostility, Guilt, Sadness, Joviality, Self-Assurance, Attentiveness, Shyness, Fatigue, Serenity, and Surprise (Watson & Clark, 1999). The time reference for self-report can be adjusted based on the research objective to measure either Trait (generally feel) or State (feel right now) affect. For this research, "during the last

session" was used as the time frame for self-report, and only general positive and negative affect assessed. Scores for the general categories range from 10-50.

Affect Grid

The Affect Grid (APPENDIX G) is designed to be a quick measure of single-instance affect along two dimensions of affect that have been shown to account for almost all variance in subjective self-reported measures of affect (Russell, Weiss, & Mendelsohn, 1989; Russell & Mehrabian, 1977). Therefore, the grid is set up along two axes of arousal and valence. Arousal is defined as *engagement* versus *disengagement*, while valence is defined as *pleasantness* versus *unpleasantness* (Watson & Tellegen, 1985). One of the main reasons for using an index such as this is that it can measure emotion based on a circular continuum or circumplex, when other measures can only sum responses into discrete affect categories, which are often highly correlated with one another and not preferable for continuous scoring methods, as noted by (Russell, Weiss, & Mendelsohn, 1989). Below is an example Affect Grid circumplex. This measure is scored from 1 to 8 on each axis/dimension, with (1,1) being the bottom left block, (9,9) being the top right, and (5,5) being the neutral position.

Figure 1. The Affect Grid. (The subject first reads the general instructions [given in the Appendix] and then is given specific instructions, such as "Please rate how you are feeling right now." The subject places one checkmark somewhere in the grid. The pleasure—displeasure (P) score is taken as the number of the square checked, with squares numbered along the horizontal dimension, counting 1 to 9 starting at the left. The arousal—sleepiness (A) score is taken as the number of the square checked, with squares numbered along the vertical dimension, counting 1 to 9 starting at the bottom.)

Figure 7. Affect Grid (Russell, Weiss, & Mendelsohn, 1989)

Trait Measures

The five-factor model of personality has developed over decades of research, and is the most widely accepted and utilized personality model among researchers. The "Big Five" factors of

personality are the only factors of personality that consistently emerge in replicated factor-analyses (Saucier, 1997), which include Extraversion, Openness, Neuroticism, Agreeableness, and Conscientiousness. The model was developed and intended to be a taxonomy of personality traits, whose central goal was the "definition of overarching domains within which large numbers of specific instances can be understood in a simplified way" (John, Naumann, & Soto, 2008). Additionally, a taxonomy such as the Big Five allows researchers to "study specified domains of related personality characteristics, rather than examining separately the thousands of particular attributes that make human beings individual and unique" (John, Naumann, & Soto, 2008). It is most useful in modern research studies due to the model's widespread use and establishes a common framework within which to operate and compare results. While the Big Five traits were derived from decades of "analyses of the natural-language terms people use to describe themselves and others" (John, Naumann, & Soto, 2008), this number should not imply that there are only five discrete personality traits making up a person. These factors are merely the broad, "Big" dimensions of a person which subsume many of the lesser "facet" traits that more fully differentiate the unique nature of each human mind.

There are a few different widely used measures of the Big Five-Factor Markers, to include the BFI (Big Five Inventory), NEO-FFI/PI-R (Neuroticism, Extraversion, Openness Five-Factor Inventory/Personality Inventory-Revised), and the TDA (Trait Descriptive Adjectives). These inventories show high corrected convergent validity with one another (mean r=.75; (John, Naumann, & Soto, 2008), therefore the specific Big-Five test used is not a major issue. The BFI and NEO-FFI use short phrases known to be "prototypical markers" of the five-factor personality model (John, 1989; John, 1990) while the TDA uses only simple adjectives that were selected as uniquely defining each of the five-factors which can be confusing or ambiguous to the participant (Goldberg, 1992; Goldberg, et al., 2006; John, Naumann, & Soto, 2008). In addition, multiple International Personality Item Pool (IPIP; 50 or 100 question options) inventories have been developed to be highly correlated with each of the previously cited five-factor structure measures (Goldberg, et al., 2006). While the NEO-PI-R inventory (250-question) seems to be the most popular test among researchers, for the purposes of this research and desire for testing expediency (that still maintains equally high internal validity), a 100-question IPIP questionnaire based on Goldberg's (1992) perspective on the five-factor structure was utilized (APPENDIX D).

Emotional Regulation Ability

The STEM, or Situational Test of Emotion Management was developed by MacCann and Roberts (2008) as a simple, quick and most importantly, freely-available measure of emotional management ability in participants (APPENDIX C). The test is made up of 44 multiple-choice, scenario-based questions where the participant chooses "among the four response options for the most effective action for the person experiencing that situation" (Austin, 2010). It is hypothesized that emotional management/regulation ability allows a participant to better process affective environmental content, allowing the participant to better perform basic tasks during affective events.

Due to the STEM being uncorrelated with standard intelligence tests (Austin, 2010), it may account for non-intelligence based variance in performance scores on the basic AF-MATB task.

This is in contrast with other emotional intelligence measures such as a component of the Mayer-Salovey-Caruso-Emotional-Intelligence Test (MSCEIT), which showed correlations between 'Understanding Emotions,' Vocabulary (r=.23, p < .05), and Series (r=.25, p < .01) intelligence of the 'Gf/Gc quickie test battery' (Austin, 2010). These results seem to be in agreement with the notion that "abstract reasoning intelligence" accounts for performance in Understanding Emotions as it is the "most cognitively saturated" component of emotional intelligence (Austin, 2010; Mayer, Salovey, Caruso, & Sitarenios, 2001). This component seemed irrelevant to the current research, as it is unlikely that understanding emotions would account for any variance in performance of this task above and beyond a shorter intelligence test like the Gf/Gc battery. While the MSCEIT is the most used EI measure (MacCann & Roberts, 2008), it was unnecessary to use in this research. Additionally, the STEM has been shown to be significantly correlated with the MSCEIT Using (r=.25, p < .05), Understanding (r=.40, p < .01), and Managing (r=.30, p < .001) branches (Austin, 2010). There are two weighting methods to score the STEM, by the mean expert rating for each choice or by the proportion of experts selecting that choice. The participants score would then be a measure of agreement with expert ratings or proportions on each question.

Cognitive Ability

It was hypothesized that there would be a positive correlation between participants of average performance of the AF_MATB task conditions and choice/decision reaction time, abstract reasoning/planning ability, and the ability to quickly change cognitive strategies in light of changing environmental operating rules (contingencies). The following cognitive tests were administered to measure these areas of interest, taking approximately 30 minutes. Examples can be found in APPENDIX H.

CANTAB Choice Reaction Time (CRT)

This test measured the speed of response to a single unpredictable stimulus, taking about six minutes in duration. The participant was presented either a left or right pointing arrow at random, and asked to press the corresponding left or right button on the press-pad as quickly as possible.

CANTAB Stockings of Cambridge (SOC)

This test assessed spatial planning and motor control, taking approximately 10 minutes. The participant rearranged balls in a virtual stocking in order to reflect a given pattern, with increasing number of move difficulty (up to five moves).

CANTAB Intra/Extra Dimensional Set Shift (IED)

This test assessed rule acquisition and attentional set shifting abilities, taking seven minutes in duration.

Physiological Sensors

A fair amount of research has shown that basic emotions or affect states can be deduced from a wide array of physiological signals (Chang, Tsai, Wang, & Chung, 2009; Haag, Gorozny, Schaich, & Williams, 2004; Kim & Andrè, 2008; Kim, Bang, & Kim, 2004; Picard, Vyzas, & Healey, 2001; Villon & Lisetti, 2007; Wagner, Kim, & Andre, 2005).

Electromyography (EMG) is one such physiological signal used to measure muscle activity. Muscle action can be recorded to study the human body's reaction to a stimulus (Stern et al, 2001). Fujimura et al (2010), Sato et al. (2008), and Chang et al (2009), with research focused on emotion and facial expression movement, found that positive stimuli increased the activity in the zygomaticus major muscle while negative stimuli increased the activity in the corrugator's supercilious muscle.

Skin conductance (SC) is a measure of the state of one's interaction with their environment and is usually measured in places on the body where eccrine sweat glands have the highest concentration (Stern et al, 2001). Skin conductance is a term that is interchangeable with electro dermal activity (EDA), skin conductance level (SCL), skin potential level (SPL), and galvanic skin response (GSR) amongst the literature. Bechara et al (2000) find that electro dermal activity is heightened when a reward (positive stimulus) and punishment (negative stimulus) are presented to individuals. Skin conductance levels are heightened when viewing pleasant and unpleasant pictures versus neutral images (Bradley, Codispoti, Cuthbert, & Lang, 2001). Overall, to evoke a measureable skin conductance response, high motivational activation stimuli are needed (Bradley & Lang, 2007).

The contracting of the heart and blood pumping to various body areas can be recorded via electrocardiogram (ECG; the study of electrical changes during the heart's contractions; Andreassi, 2007). After inducing students through music elicitation (emotions included joy and pleasure), Xun and Zheng (2013) reported when heart rate variability (HRV; the varied time interval between heart beats) was pulled from the ECG signal that joy and pleasure could be recognized with a high accuracy rate using a support vector machine (SVM; an algorithm and supervised learning model which recognizes and classifies patterns). Schut et al (2010) showed significant interactions between emotions elicited and HRV activity amongst persons during film clip viewing. Codispoti, Bradley, & Lang (2001) showed that cardiac activity is highly dependent on the duration and presence of sensory information presentation.

Stern et al (2001) emphasized the findings of Lacey (1959) mentioning "that no one measure of bodily arousal was adequate in relation to either psychological process variables or other physiological measures." Stern et al (2001) also summarized the conclusions of psycho physiological pioneers Chester Darrow and R.C. Davis in suggesting that future research focus on discovering patterns in the above and other such recordings. This work seeks to address such issues.

2.7 Emotion Elicitation

Affective science is a growing field and the techniques of eliciting emotions amongst humans is vast including images and sounds (Bradley & Lang, 2007; Wiens & Ohman, 2007), expressive behaviors (Ekman, 2007; Laird & Strout, 2007), scripted and unscripted social interactions (Harmon-Jones, Amodio, & Zinner, 2007; Roberts, Tsai, & Coan, 2007), and music (Eich, Ng, Macaulay, Percy, & Grebneva, 2007). The use of film clip stimuli can also be included in this list where they have been used to evoke brief affective responses in the emotion response system (Rottenberg, Ray, & Gross, 2007; Davidson, Ekman, Saron, Senulis, & Friesen, 1990; Tomarken, Davidson, & Henriques, 1990; Rosenberg & Ekman, 1994; Kreibig, Wilhelm, Roth, & Gross, 2007; Bartolini, 2011). Emotions, unlike moods, are tied to specific objects or elicitors (real or imagined) and are multi-component, involving changes in cognitive, experiential, and central physiological, peripheral physiological, and behavioral response systems (Lang, 1978; Rottenberg, Ray, & Gross, 2007). Film stimuli will be used in this experiment.

The key dimensions of film stimuli are intensity (considers the response strength and the awareness of multi-response system activation); complexity (considers the variability of clips, e.g. silent vs. auditory or color vs. black & white); attentional capture (attention required to operate); demand characteristics (considers the context, i.e. the back-story and the instructions used in the viewing of the clip); standardization (e.g. stimulus content, presentation apparatus and viewing condition); temporal considerations (the data collection of responses over time, especially when they can occur over seconds or milliseconds); and ecological validity (considering the realism and illusion of clips and potential for human reaction) (Rottenberg, Ray, & Gross, 2007).

Additionally, it is important to consider how the clips are matched across their differences (e.g. length and activation level) as well as the length of clip to use and the number of clips to use over an experimental session (considerations include fatigue effects over time, attention span and participant availability) (Rottenberg, Ray, & Gross, 2007). For example in regards to timing, a negative valence clip shown at the end of a 2-hour session may not be rated the same as it would be at the beginning of the session. Carryover effects may also become apparent when films of the same valence are adjacent to one another or presented in block order (Rottenberg, Ray, & Gross, 2007; Branscombe, 1985; Neumann, Seibt, & Strack, 2001). This will be accounted for through counterbalancing of treatment conditions. However, it is believed that the characteristics of the video clips, in terms of their perceptual and cognitive attributes, will not be equivalent.

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES

3.1 Participants

A total of 36 participants were recruited from the Air Force Research Laboratory, Wright State University, and the Air Force Institute of Technology. All participants were at least 18 years of age and were screened for normal color vision before being allowed to participate. The number of participants to be used in the study was in multiples of eight to accommodate the experimental block design. Due to technical issues involving the BioNomadix sensors and data loss of one

dataset, 4 additional replacement participants were required above 32. All participants were given \$46 for participating.

3.2 Demographic Descriptors

Table 1. Demographic Frequencies

					Valid
Gender			Frequency	Percent	Percent
	Valid	Male	17	50.0	51.5
		Female	16	47.1	48.5
		Total	33	97.1	100.0
	Missing	System	1	2.9	
	Total		34	100.0	
					Valid
Military			Frequency	Percent	Percent
	Valid	Non-Military	28	82.4	84.8
		Military	5	14.7	15.2
		Total	33	97.1	100.0
	Missing	System	1	2.9	
	Total	•	34	100.0	
					Valid
Occupation			Frequency	Percent	Percent
	Valid		1	2.9	2.9
		Army Reserve	1	2.9	2.9
		Computer Science	1	2.9	2.9
		Division Director	1	2.9	2.9
		food service worker	3	8.8	8.8
		lifeguard	1	2.9	2.9
		medical career	4	11.8	11.8
		none/unemployed	7	20.6	20.6
		researcher/scientist	2	5.9	5.9
		retail sales associate	1	2.9	2.9
		student/intern	11	32.4	32.4
		YMCA front desk	1	2.9	2.9
		Total	34	100.0	100.0

					Valid
Lenses			Frequency	Percent	Percent
	Valid	No Lenses	24	70.6	72.7
		Wears Lenses	9	26.5	27.3
		Total	33	97.1	100.0
	Missing	System	1	2.9	
	Total		34	100.0	
Dominant Hand					
	Valid	Right	26	76.5	76.5
		Left	8	23.5	23.5
		Total	34	100.0	100.0
					Valid
Joystick Hand			Frequency	Percent	Percent
	Valid	Right	28	82.4	82.4
		Left	6	17.6	17.6
		Total	34	100.0	100.0
					Valid
Medications?			Frequency	Percent	Percent
	Valid	No Medications	33	97.1	97.1
		On Medication	1	2.9	2.9
		Total	34	100.0	100.0

Table 2. Demographic Descriptors

					Std.
	N	Minimum	Maximum	Mean	Deviation
Age	33	18	59	24.45	9.391
Years of Higher Education	33	12	16	14.00	1.732

3.3 Apparatus and Stimuli

3.3.1 Experimental control system

Participants engaged in the Air Force MATB's (Multi-Attribute Task Battery) Tracking and Fuel Management tasks in the form of a computer game, as described above. During experimental sequences, room lighting was dimmed to a controlled low level. The subject station consisted of a single 24-inch wide-screen monitor for task operation and questionnaire completion. Video clip stimuli were displayed on a 50-inch monitor positioned directly above and behind the 24-inch monitor. An Onkyo surround-sound system was used for video clip audio stimuli. A

standard ambidextrous gaming joystick was used for task operation. Windows 7 x64 was used on all high-performance computer systems. Experimental control software was developed inhouse on contract by a Sumaria Systems Inc. contractor, written primarily in Java. All questionnaires, experimental sequences (videos, task, etc) were fully automated and preprogrammed for each experimental condition and ordering.

Figure 8. Cyber Affect Laboratory

3.3.2 Room Temperature

Room temperature data logging was accomplished with a battery powered Lascar USB temperature/humidity logger positioned near the middle of the room approximately five feet from the floor.

3.3.3 Wireless Physiological Sensors

This experiment utilized Biopac BioNomadix wireless transducers and the Biopac AcqKnowledge software application for physiological assessment. In an attempt to correlate participant affect states and performance with basic physiological signals, the following sensors were used in this research: *Electromyogram* (*EMG*), *Electro dermal Activity* (*EDA*), *Electrocardiogram* (*ECG*), *Respiration Rate* (*RSP*), *Skin Temperature* (*SKT*), *Electrocalogram* (*EOG*), and *Photoplethysmogram* (*PPG*).

None of the Biopac devices introduced any form of electric current across the body, and each was a passive measure of amplified physiological-currents or conductivity. EMG assessment used solid-gel Ag-AgCl 1" electrodes, which did not require skin abrasion for placement. In this study, EMG was used to measure somatic nerve activation of the corrugators supercilii and

zygomaticus major facial muscles. EOG assessment also used solid-gel Ag-AgCl electrodes placed above and below the right eye and on both temples to amplify signals produced by horizontal and vertical eye muscle saccades. EDA assessment used pre-gelled Ag-AgCl electrodes to measure the electrical skin conductance of the palm (non-joystick hand), which changes in proportion to sweat gland activity and is used as a measure of autonomic nervous system activity. ECG assessment used pre-gelled Ag-AgCl electrodes to measure cardiac nerve muscle activation patterns and to determine heart rate (HR), inter-beat-interval (IBI), and heartrate variability (HRV). RSP assessment used two respiration transducer bands measuring thoracic and abdominal breathing patterns. SKT assessment used a slow and a quick response thermister to determine skin temperature in various areas of interest. For this study, the slow response thermister was taped against the skin under the armpit area over the brachial artery with medical tape to measure central body temperature. The quick response thermister was taped to the 5th digit (little finger) of the non-joystick hand to measure peripheral body temperature. PPG assessment used an ear-lobe affixed photoelectric transducer to measure visual blood flow beneath the skin, taken as a measure of basic pulse rate at the peripheral areas to be compared with ECG as a derived measure of pulse-transit time (PTT).

Based on the criteria for affect induction described above, the following film stimuli clips were utilized in this experiment:

Table 3. Affect State Induction Clips

<u>Valence</u>	Treatment Condition #	Film Title	Reference	Film Clip Duration (sec)	Film Description
Positive	1	The Dead Poets Society	(Schaefer, Nils, Sanchez, & Philippot, 2010)	307	All the students climb on their desks to express their solidarity with their teacher, who has just been fired.
Positive	2	When Harry Met Sally	(Gross & Levenson, 1995)	155	Sally simulates an orgasm in a restaurant
Positive	3	Puppy	(Fredrickson & Levenson, 1998)	55	Puppy fights with flowers.
Positive	4	Benny and Joon	(Schaefer, Nils, Sanchez, & Philippot, 2010)	86	A man plays the fool in a coffee shop.
Negative	5	Misery	(Schaefer, Nils, Sanchez, & Philippot, 2010)	75	A woman breaks a man's legs.
Negative	6	Cat's Eye	(Fredrickson & Levenson, 1998)	225	A man inches along the ledge of a high rise building and at one point loses his grip.
Negative	7	The Champ	(Gross & Levenson, 1995)	171	A young boy cries as he watches his father die.
Negative	8	The Piano	(Schaefer, Nils, Sanchez, & Philippot, 2010)	156	One of the characters gets her finger cut off.

3.3.4 Participant Compensation

Participants were instructed before beginning that they would receive \$30 for simply participating, and up to a \$16 bonus for consistently performing well in the task. Performing "well" was determined by a MATB performance baseline established during training. Pilot testing showed that a general population score leveled off after about six or seven practice two-minute trials, or 12-14 minutes of total task training time. This was sufficient to eliminate the majority of the learning/practice effect. The last three practice trials were averaged to establish the normal performance score per minute baseline and used as the upper limit for performing "well" with the lower limit being 80% of this value. Performing "adequately" was defined for each participant as between 60-80% of this value, and "poorly" was below 60% of this value. Mean performance (score) for each trial was calculated and returned to the experimenter at the end of the experiment, and each trial's compensation bonus was calculated and summed together based on the following performance-compensation rules: poor = \$0.25; adequate = \$0.50; well = \$1.00.

The total compensation amount of \$30 + \$bonus was planned to be given to the participant at the conclusion of the experiment and the participant was not informed of the amount at any point during the experiment. However, due to various software issues and thereby uncertainty in the automated calculator, it was determined the best course of action would be to give the full amount of \$46 to each participant at the conclusion of the experiment regardless of performance. This would avoid 'shorting' the participant due to possible summation errors. The monetary incentive to the participant to perform to their utmost ability was retained with this method, as the participant was under the impression until the end of the experiment that their 'bonus' amount was contingent upon performing well.

3.4 Procedure

This experiment used a repeated measures design in the A x B x s design family, a two factor within-subject design, broken down further by Session (1 v 2): Session X Attack Type X Video Valence X Subject. Each experimental sequence involved a single participant. Each sequence consisted of obtaining informed consent, training on the AF_MATB task, introductory questionnaires, several experimental data collection trials, and end-of-session questionnaires. Factor A was the attack location/type (AL with 4 levels) and factor B was the valence of the Video clip (VV) presented before each AF_MATB operating period (VV with 2 levels). This 4 x 2 x s design used 8 treatments (combinations of independent variable levels) repeated twice, totaling two sessions or 16 trials. Treatment levels are shown in Table xx below. The order of treatment conditions presented to each participant was counterbalanced to minimize first-order carryover effects.

Table 4. Treatment List

Treatment	Attack Location Level	Video Valence Level
T1	None	+

T2	Time	+
T3	Fuel/Rsrc Mgmt	+
T4	Score	+
T5	N	-
T6	Т	-
T7	F	-
T8	S	-

The following outline demonstrates the order of events in which questionnaires and procedures were distributed, explained, and collected, at what point participants performed the task itself, collection and analysis of physiological data using Biopac, and additional participant monitoring via audio-visual systems (no audio-visual recordings were made or retained).

The experimenter was initially in the room to prepare the participant, the computer system, equipment, automated trait questionnaires, and cognitive tests. During the experimental sequences, the experiment was controlled remotely from a separate lab space to minimize any presence effects during affect measurement, emotion elicitation, or task performance. The experimenter was able to operate the participant computer remotely, and communicate and view the participant from a separate room.

Presented during the initial questionnaires, experimental baselines for Affect were assessed by the PANAS-X mood state indicator, the Affect Grid, and the affect slider bars. Affect slider bars were used to measure in a linear method the two main dimensions of affect, valence and arousal. It was used as an experimental check on the Affect Grid to determine if participants understood the Grid. These separate measures should theoretically be perfectly correlated if participants understood what was being asked of them subjectively. These initial measures were collected in order to establish a baseline in the affect data based on each participant, which would eliminate some random variability in the data across participants. The IPIP, STEM, and CANTAB cognitive tests (IED, SOC, CRT) described above (Section 2.6) were administered at this time. The IPIP and STEM were administered via the experimental control program and auto-coded. The cognitive tests were administered by the experimenter via a CANTAB tablet computer running the assessment software. These initial questionnaires and testing took approximately 45 minutes.

Training on the task began after initial questionnaires and cognitive testing was completed. An introduction training video was played which instructed the participant on the operation of the task. This was pre-recorded to ensure training consistency among all participants. Any questions the participant had following the video would be answered by the experimenter. The training consisted of the participant operating the standard no-attack condition for seven trials, each two minutes in duration, or 14 minutes of task training. The experimenter would assist the participant in learning the task during this hands-on portion of training, instructing participants on the optimal strategy for scoring points.

When training was complete, the participant was taken to a separate room for physiological sensors to be attached. Once satisfied with the correct function of the sensors, the experimenter

would engage the temperature data logger and prepare the room for task and video operation. Once satisfied, the experimenter would leave and remotely start the first of 16 trials. At the instantaneous start of the first trial, the Biopac system was engaged by electronic trigger in order to exactly synchronize the time counters between the AcqKnowledge software and the Java experimental data output software. The experimental time in milliseconds for each event in an experimental sequence was captured by the Java software program and output at the conclusion of the entire sequence. For example, the Trial 1 neutral clip was recorded as the 0ms mark with the Trial 1 video clip starting around 75,000ms, etc. These time-count event marker delineations were used to parse the AcqKnowledge physiological data files during post-analysis.

Each trial began with a neutral clip for one minute. This clip was a recorded 'screensaver' type stimulus that was intended to focus the participant on the large monitor and neutralize affect state. Following this, a pre-recorded synopsis of the upcoming video clip was played to introduce the participant to the clip in the context of the overall feature movie if necessary. Once the synopsis was read, the experimental movie clip stimulus was played. During the video clip, a 'continuous' affect grid was displayed on the participant station. The participant was instructed to move or click on the affect grid constantly during the clip as their mood state changed. The current position of the affect grid block was recorded every 100ms. These data were summarized post-experiment for minimum, maximum, and mean values per clip dataset as a means to assess affect induction during video clip stimuli. Once the video stimulus was complete, the Affect Grid was presented followed by the PANAS-X mood state indicator and a film response questionnaire.

When the pre-task questionnaires were completed, the AF_MATB task window appeared on the participant station. When the participant was ready to begin the task, they would press the spacebar and would be given a five-second countdown. When the task began, an event marker was written into the data log. Each AF_MATB task was 60 seconds in duration. Following the task, the Affect Grid, PANAS-X, and NASA TLX were presented. This completed a single standard trial.

After 8 trials, the subject was given a 3-5 minute break for a snack or to use the restroom. When the subject returned, they were given the trial order again. The first session was condition order sequence AB (1-8), second session sequence was BA (9-16), completing the ABBA design. Following completion of trial 16, a debriefing questionnaire was presented. When complete, the participant was taken to a separate room to detach the physiological sensors and receive the \$46 in compensation. Any questions were answered by the attending researcher and the participant was dismissed. The average experiment took 4 hours from subject arrival to dismissal.

Example Experimental Sequence

- o Experimenter (E) sets-up facility
- o Ceiling lights at bright level
- o Participant (P) enters room
- o E instructs P to sit at workstation
- o E introduces the experiment to P
- o E asks P to fill out the Informed Consent Document
- o P completes and signs the Consent Form and gives it to E E signs it
- o E gives P a basic color vision screening test to ensure normal color vision.
- o E gathers trait, state, EI, and cognitive ability information using the workstation
 - Workstation presents Demographic Questionnaire (Appendix F)
 - Workstation presents Emotional Intelligence questionnaire (Appendix G)
 - Workstation presents Cognitive Tests (Appendix L)
 - Workstation presents EPIP-NEO personality inventory (Appendix H)
 - Workstation presents Affect Grid & Sliders (Appendix K) for baseline
 - Workstation presents PANAS-X Mood State Indicator (Appendix J) for baseline
- o E trains P on the AF_MATB task training criteria met (see above)
- E attaches BioPac sensors to P
- E verifies BioPac is being collected and recorded
- E leaves room and operates systems remotely
- Trials begin as outlined below

Example Trial:

VV= Video Valence

VC= Video Clip

T#=Treatment number (1-8)

AL=Attack Location / Type (N=none; T=tracking; F=fuel/resource; S=score)

Trial 1 - Treatment-1

- Begin Neutral Clips (screensaver) 1 minute Clip Ends
- 2. Begin Upcoming Clip Synopsis video Synopsis Ends
- Begin first video clip {VV+, T1}
 Continuous Affect Grid displayed during presentation of clip Clip Ends
- 4. Workstation presents Affect Grid & Sliders (APPENDIX G)
- 5. Workstation presents PANAS-X (APPENDIX F)
- 6. Workstation presents Film Response Questionnaire (APPENDIX A)
- Workstation begins AF_CYBER_MATB task {AL(N), T1}-60 sec duration Task Ends
- 8. Workstation presents Affect Grid & Sliders (APPENDIX G)
- 9. Workstation presents PANAS-X (APPENDIX F)
- 10. Workstation presents NASA TLX (APPENDIX E)

Trial Ends

- o Complete trials 1-8 to complete Session 1 (AB)
- o Participant takes 3-5 minute break
- o Complete trials 9-16 to complete Session 2 (BA)
- o Trials end; Debriefing questionnaire (APPENDIX I) administered
- o Compensation disbursed
- o Final debriefing statement given to participant
- Participant dismissal

4.0 RESULTS AND DISCUSSION

This study involved the use of several independent, dependent, and attribute variables. Each of these variables is listed in Table 5. Descriptors of independent, dependent, and derived variables and in Table 6. Attribute-type variables along with the variable's type and range as observed in the study's data. Section Four of this report describes the results. Section Five of this report discusses the results and their implications. The results of this study indicate that a complex interaction of factors has a significant effect on that participant's performance of the AF-MATB tasks and that emotional state changes are observable. It is also clear from these analytical results and graphical depictions that significant interactions exist among the variables for session, attack type, valence, gender, age, cognitive ability, and emotional management ability. The implications of the study results are broad.

Table 5. Descriptors of independent, dependent, and derived variables

Variable Name	Description	Type	Minimum	Maximum
Attack_Ty	Target of Simulated Information Attack	Independent	N/T/F/S	N/T/F/S
Valence_S	Video Clip Valence	Independent	Positive/Negative	Positive/Negative
Trial Sco	Task Score per Trial	Dependent	-93062	49240
REL_SCORE	Task Score Relative to No Attack Baseline	Dependent(derived)	-80469	36098
TLX_MD	NASA TLX Rating	Dependent	0.0	1.0
TLX_PD	NASA TLX Rating	Dependent	0.0	1.0
TLX_Prfm	NASA TLX Rating	Dependent	0.0	1.0
TLX_Efrt	NASA TLX Rating	Dependent	0.0	1.0
TLX_Frus	NASA TLX Rating	Dependent	0.0	1.0
PTT_1	Pulse Transit Time- epoch 1(ms)	Dependent	142	888
PTT_2	Pulse Transit Time- epoch 2(Dependent	152	844
PTT_3	Pulse Transit Time- epoch 3(Dependent	79	1971
PTT_4	Pulse Transit Time- epoch 4(Dependent	134	641
HR_1	Heart Rate-epoch 1(bpm)	Dependent	42	104
HR_2	Heart Rate-epoch 2(bpm)	Dependent	43	105
HR_3	Heart Rate-epoch 3(bpm)	Dependent	46	122
HR_4	Heart Rate-epoch 4(bpm)	Dependent	49	125
EDA_1	Electro-dermal Activity-epoch 1(smho)	Dependent	0.004	28.995
EDA_2	Electro-dermal Activity-epoch 1(smho)	Dependent	0.051	28.28
EDA_3	Electro-dermal Activity-epoch 1(smho)	Dependent	0.052	23.54
EDA_4	Electro-dermal Activity-epoch 1(smho)	Dependent	0.005	33.41
DEL_HR_C	Heart Rate change during video replay	Dependent(Derived)	-38	40.25
DEL_PTT_C	PTT change during video replay	Dependent(Derived)	-438	394
DEL_EDA_C	EDA change during video replay	Dependent(Derived)	-5.06	10.85
DEL_HR_T	Heart Rate change during task	Dependent(Derived)	-49.17	43
DEL_PTT_T	PTT change during task	Dependent(Derived)	-1580	321
DEL_EDA_T	EDA change during task	Dependent(Derived)	-6.34	5.48
DEL_HR_R	Heart Rate change across trial	Dependent(Derived)	-45	54.58
DEL_PTT_R	PTT change across trial	Dependent(Derived)	-461	226
DEL_EDA_R	EDA change across trial	Dependent(Derived)	-8.92	10.58
AR_AS_Pre	Pre-trial Arousal with Slider	Dependent	1	9
AR_AS_Post	Post-trial Arousal with Slider	Dependent	1	9
VA_AS_Pre	Pre-trial Valence with Slider	Dependent	1	9
VA_AS_Post	Post-trial Valence with Slider	Dependent	1	9
AR_AG_Pre	Pre-trial Arousal with Affect Grid	Dependent	1	9
AR_AG_Post	Post-trial Arousal with Affect Grid	Dependent	1	9
VA_AG_Pre	Pre-trial Valence with Affect Grid	Dependent	1	9
VA_AG_Post	Post-trial Valence with Affect Grid	Dependent	1	9
PNS_N_Pre	Pre-trial PANAS-N	Dependent	10	47
PNS_N_Post	Post-trial PANAS-N	Dependent	10	40
PNS_P_Pre	Pre-trial PANAS-P	Dependent	10	50
PNS P Post	Post-trial PANAS-P	Dependent	10	50

Table 6. Attribute-type variables

Variable Name	Description	Туре	Minimum	Maximum
Stgs_raw	Stages Completed-raw score	Attribute	7	9
Stgs_std	Stages Completed-standardized score	Attribute	-1.04	0.46
Tot_E_raw	Total Number of Errors-raw	Attribute	6	68
Tot_E_adj	Total Number of Errors-adjusted	Attribute	6	68
Tot_E_raw_std	Total Number of Errors-stamdard score	Attribute	-4.01	1.05
Tot_E_adj_std	Total number of Erors-adj-standard score	Attribute	-1.1	0.76
M_T_Time	Mean Initial Thinking Time	Attribute	0	26956
M_T_Time_std	Standardized Mean Initial Thinking Time	Attribute	-1.48	1.37
S_T_Time	Mean Subsequent Thinking Time	Attribute	0	6709.7
S_T_Time_std	Standardized Mean Sub. Thinking Time	Attribute	-1.18	0.70
No_Prbm	Number of Problems solved	Attribute	4	12
No_Prbm_std	Number of Problems solved-stnd score	Attribute	-2.03	1.9
Crt_Ltncy	Latency	Attribute	261.66	452.02
Max_Crt_ Ltncy	Maximum Latency	Attribute	348	1279.0
SD_Crt_ Ltncy	Latency-std deviation	Attribute	27.8	132.78
Pct_Correct	Percent Correct	Attribute	95.0	100.0
Age	Age	Attribute	18	59
Gender	Gender	Attribute	M/F	M/F
Mil_Membr	Member of the military	Attribute	Y/N	Y/N
Yrs_Ed	Years of Formal Education	Attribute	12	16
Occupation	Occupation	Attribute	NA	NA
Lenses	Participant rewuire Eye-glasses	Attribute	Y/N	Y/N
IPIP_1	International Personality Item Pool	Attribute	0.1750	1.0
IPIP 2	International Personality Item Pool	Attribute	0.4000	1.0
IPIP_3	International Personality Item Pool	Attribute	0.1375	1.0
IPIP_4	International Personality Item Pool	Attribute	-0.0250	1.0
IPIP_5	International Personality Item Pool	Attribute	-0.025	0.1875
ERA_MER	Situational Test of Emotional Mgt.	Attribute	0.7621	0.9656
ERA_PEC	Situational Test of Emotional Mgt.	Attribute	0.2820	0.8538
AR_AS_Bse	Baseline-Arousal with S;ider	Attribute	1	9
VA_AS_Bse	Baseline-Valence with Slider	Attribute	4	9
AR_AG_Bse	Baseline Arousal with Affect Grid	Attribute	1	9
VA_AG_Bse	Baseline- Valence with Affect Grid	Attribute	5	9
PNS_N_Bse	Baseline –PANAS-N	Attribute	10	28
PNS P Bse	Baseline –PANAS-P	Attribute	15	50

Experimental data were collected using 36 participants. Of the 36 participants, data from 30 were utilized in subsequent analyses. The data from six participants were unusable because of various hardware issues during the experimental trials or extremely low signal to noise levels in the physiological data probably caused by improper electro placement on the participant, resulting in heartbeat patterns that were not reliably discernible in the recorded data. Data from 33 of the 36 original participants were used in the analysis of system change perception as these data were not corrupted by technology issues.

4.1 Task Performance Analyses of Independent Variable Effects

An initial repeated measure Analysis of Variance (ANOVA) was conducted to determine if, and to what extent, the independent variables exerted statistically significant affect on task performance as measured by the score achieved by the participant over the experimental trial. The Geisser-Greenhouse and Huynh-Feldt corrections were averaged and applied to the resulting F statistic where appropriate as determined by the non-spheriscity of the data. This correction resulted in a more conservative interpretation of statistical significance than would be applied without the correction in situations when p is close to but less than .05.

Prior to the experimental trials, the participants were trained on the task for familiarization only. The participant's strategy for accomplishing the task was not constrained. Due to this, the level of scoring at the completion of training was stable but not equivalent across participants. In other words, each participant's baseline task performance varied. To account for this, an estimated baseline was derived for each participant by identifying the maximum of the 4 raw scores associated with the "No Attack" treatment condition for each participant. This maximum value was then used as the baseline performance for that participant. The trial scores (Rel_Score) were then derived by subtracting the individual baseline estimate from the raw score for each trial. The baseline was calculated individually for each subject.

Eight trial orderings were utilized and counterbalanced in the study as described in earlier sections. An ANOVA of task performance, as measured with the relative score, was performed investigating trial order as a between-subject factor. No significant main effect or interactions were observed in the results.

Independent variables included attack type simulated (Attack_Ty) and video clip valence state (Valence_S). A secondary variable was also utilized in the analysis to indicate the ordering of the data collection as described in the previous sections (Session) Results of the initial analysis are shown in APPENDIX O. Results of Stastical Analyses. A summary of the significant results is described in the following sections of this report. As can be seen in the ANOVA result appendix, there is a significant main effect on the task performance score from both the attack type and session (F(3,87) = 72.68; p < .001) and (F(1,29) = 18.82; p < .001), no significant effect from the video clip valence state, but a significant three-way interaction was observed between attack type valence state, and session (F(3,87) = 2.93; p < .05). These effects are depicted in Figure 9. Performance as a Function of Attack Type, Video Valence, and Session Number.

Figure 9. Performance as a Function of Attack Type, Video Valence, and Session Number

4.2 Analyses of Participant Attribute Affect on Task Performance

Participant cognitive abilities and personality composition may have influenced task performance. To investigate this possibility, participant cognitive abilities and personality composition, measured as attribute variables, were analyzed using a mixed between and within-subject analysis of variance. All individual attributes listed in Table 5. Descriptors of independent, dependent, and derived variables were treated as between-subject variables in this investigation as they are not assignable as are within-subject variables. No attempt was made by the researchers in the data collection phase to recruit participants with specific combinations of personality and cognitive capabilities. The personality trait and cognitive ability attribute variables were collected using questionnaires and cognitive testing as described in the earlier sections of this report. Each of the resulting attributes variables shown in Table 5. Descriptors of independent, dependent, and derived variables, were tested as between-subject variables with the within subject variables and utilized in a mixed-design repeated measures ANOVA. Significant results from these analyses are shown in APPENDIX O. Results of Stastical Analyses and are summarized in the following sections.

4.2.1 Participant Demographic Influences

Several of the participant's demographic information has a significant statistical affect on task performance as measured by the task's scoring algorithm at the completion of each trial. The participant's age (Age_L) interacted with attack type to significantly affect task performance (F(6,69) = 2.48, p < .035). Years of education (Ed_Yrs_L) interacted with attack type and session to significantly influence the relative score (F(6,63) = 2.43, p < .001) and (F(3,87) = 72.68, p < .001). These effects are depicted in Figure 10. Relative Score as a Function of Age and Educational Level.

Figure 10. Relative Score as a Function of Age and Educational Level

4.2.2 Participant Trait Influences

Several of the measured cognitive ability variables appeared to significantly affected the relative score, those being the "Max thinking" times (M_T_Time_L) observed during problem solving activity in a four-way interaction with attack type, the valence of the video clip, and the session of the trial F(6, 69) = 2.45, p < .035). The mean thinking time (S_T_Time_L) significantly

affected the relative score, observed during problem solving activity in a three-way interaction with the valence of the video clip and the session of the trial $(F(2,21)=4.03,\,p<.035)$. The total number of problems solved (No_Prb_L) , interacting with session, significantly affected the relative score $(F(2,21)=7.12,\,p<.005)$. The total number of errors made $(ToT_E_A_L)$, interacted with attack type and significantly affected the relative score $(F(6,81)=2.43,\,p<.035)$. The percentage of solved problems completed during the cognitive testing interval for each participant (P_Scor_L) , interacted with attack type, significantly affected the relative scoring of the task $(F(6,63)=3.10,\,p<.015)$. P_Scor_L also significantly affected the relative score in a three-way interaction with attack type and session $(F(6,63=2.75,\,p<.02))$. These effects are depicted in Figure 11. Participant traits influenced performance.

Figure 11. Participant traits influenced performance

Of particular note was that none of the "Big-5" personality trait dimensions nor emotional stability measures exhibited a statistically significant affect on the relative score.

An interaction effect was found to influence score by attack type and the emotion management ability scored by the mean expert rating weights (F(3,60) = 2.823, p = .046). This is shown graphically in Figure 12. Emotional Management and Attack Type Affected Performance.

Figure 12. Emotional Management and Attack Type Affected Performance

4.2.3 Initial Affect State as an Attribute Factor

The participant's emotional state at the beginning of an experimental session can be thought of, from an analyses perspective, as an attribute of that participant as participants were used for only a single experimental period. However, no effect on the relative task scores was observed from the participant's initial emotional state as measured with the Affect Grid and the Affect Slider mechanisms.

4.3 Effects of Independent Variables on Physiological Measures

The existing literature describes the inferencing of affect state from physiological signals as a very difficult task (Wioleta, 2013). The capabilities of most individuals to mask, or control, their psycho-physiological signals is significantly lower that their ability to mask, or control, other affect state indicators such as their facial recognition, or verbalizations. Because of this, the use of physiological signals to estimate and recognize affect state may provide methods for precise and unobtrusive affect state recognition. Unfortunately, the analyses of physiological signals for affect state recognition has to date produced conflicting results in the literature most likely due to the affect system's complexity and associated indirect, and summative, connections with the observables of the psycho-physiological system (Kreibig, Wilhelm, Roth, & Gross, 2007). For these reasons and based on existing literature, analyses for this study concentrated on the measures of heart rate, using EKG and PPG signals, and Electro-Dermal Activity, EDA. Pulse Transit Time (PTT), the duration of time between the R-peak in the EKG and the associated peak in the PPG, was also investigated as a dependent variable.

During this study, physiological data were collected as a single sample for each participant. The physiological measures were continuous variables sampled at 1 millisecond time increments during the duration of each experimental session using a MP150 data acquisition system from BIOPAC Systems Inc. This experiment utilized Biopac BioNomadix wireless transducers and the Biopac AcqKnowledge software application for physiological data collection. Physiological

data collected was the Electromyogram (EMG), Electro dermal Activity (EDA), and heart rate in the form of the Electrocardiogram (ECG), and the Photoplethysmogram (PPG). Also collected were Respiration Rate (RSP), Skin Temperature (SKT), and Electrocardiogram (EOG).

Significant differences can exist between the characteristics of psycho-physiological signals of individuals. To provide for an individualized baseline condition during each trial for each participant, and to provide for a finer level of precision in determining the timing of affect system changes if they exist in the data, four samples of the physiological signals were taken from each trial from each participant. This provided a total of 64 distinct time epochs, each of which were 12 seconds in duration and thus containing 12000 raw signal samples, over which the measure was counted. For example, the cardiac measures, Within each 12 second epoch, the initial "Q" peak was detected, the number of full "Q peaks following the first were counted, and then the number of "Q" peaks with the associated timing between the first and last, was used to calculate the heart rate. It was then rounded to the nearest 1 beat per minute (bpm). The EDA was averaged across the duration of each time epoch resulting in a single decimal number in uMhos. The Figure labeled Figure 13. Typical Individual Trial Sequence and Timing, depicts a typical event sequence for a single trial that is overlaid with the 12-second time epochs over which the physiological signals were measured.

Figure 13. Typical Individual Trial Sequence and Timing

4.3.1 Heart Rate (EKG and PPG)

The participant's heart rate during epoch one (HR_1) was not significantly affected by any of the independent variables. The participant's heart rate during epoch two (HR_2) was significantly affected by attack type (F(3,87) = 4.46, p < .006). The participant's heart rate during epochs three (HR_3) and four (HR_4) was significantly affected by the valence of the video clip

(F(1,29) = 5.29, p < .03) and (F(1,29) = 5.19, p < .031). These effects are depicted in **Figure 14.** Attack Type and Video Valence Influence Heart Rate.

Figure 14. Attack Type and Video Valence Influence Heart Rate

Several measures based on differential heart rate were also calculated. The heart rate difference between epoch two and epoch one (DEL_HR_C) was significantly affected by both the valence of the video clip and the attack type (F(3,87) = 3.37, p < .025) and (F(1,29) = 4.19, p < .05). The heart rate difference between epoch four and epoch one (DEL_HR_R) was significantly affected by both the valence of the video clip and the session of the trial (F(1,29) = 6.82, p < .015) and (F(1,29) = 5.73, p < .025). The heart rate difference between epoch four and epoch three (DEL_HR_T) was not significantly affected by any of the independent variables. These effects are depicted in **Error! Reference source not found.**

Figure 15. Change in Heart Rate during Video Clip Presentation

Figure 16. Change in Heart Rate during Video Clip Presentation and Trial

4.3.2 Pulse Transit Time (PTT)

Pulse Transit Times during epoch one (PTT_1) were not significantly affected by the independent variables. Pulse Transit Times during epoch two (PTT_2) were significantly affected by a three-way interaction of attack type, valence of the video clip, and the trial session (F(3,87) = 2.86, p < .05). This effect is depicted in Figure 17. Pulse Transit Times vary with Attack Type, Video Clip Valence, and Session. Pulse transit times during epochs three (PTT_3) and epoch four (PTT_4) were not affected significantly by the independent variables.

Figure 17. Pulse Transit Times vary with Attack Type, Video Clip Valence, and Session

Several measures based on differential pulse transit time were also calculated and analyzed. The pulse transit time difference between epoch two and epoch one (DEL_PTT_C) was significantly affected by a two-way interaction of valence of the video clip and trial session (F(1,29) = 6.68, p < .02). The pulse transit time difference between epoch four and epoch one (DEL_PTT_R) was significantly affected by a two-way interaction of attack type and the trial session (F(3,87) = 3.13, p < .03). The pulse transit time difference between epoch four and epoch three (DEL_PTT_T) was not significantly affected by any of the independent variables. These effects are depicted in

Figure 18. Change in Pulse Transit Time during Video Clip Presentation and **Trial**.

Figure 18. Change in Pulse Transit Time during Video Clip Presentation and Trial

4.3.2 Electro-Dermal Activity (EDA)

Electro-dermal activity during epoch one (EDA_1) was not significantly affected by the independent variables. Electro-dermal activity during epoch two (EDA_2) was significantly affected by attack type and valence of the video clip, both as main effects and an interaction $(F(3,87)=6.84,\,p<.001),\,(F(1,29)=7.03,\,p<.015),\,$ and $(F(3,87)9.16,\,p<.001).$ Electro-dermal activity during epochs three (EDA_3) and four (EDA_4) were not significantly affected by the independent variables. These significant effects are depicted in Figure 19. Electro-dermal Activity varies with Attack Type and Video Clip Valence.

Figure 19. Electro dermal Activity varies with Attack Type and Video Clip Valence

Several measures based on differential Electro-dermal activity were also calculated. The Electro-dermal activity difference between epoch two and epoch one (DEL_EDA_C) was significantly affected by the valence of the video clip and the attack type as main effects (F(3,87) = 7.62, p < .001) and (F(1,29) = 5.12, p < .0351), and the two-way interaction of video clip valence and the attack type (F(3,87) = 8.65, p < .001). The electro-dermal activity difference between epoch four and epoch one (DEL_EDA_R) was significantly affected by the trial session as a main effect (F(1,29) = 14.67, p < .001) and the three-way interaction of attack type, video clip valence, and the trial session (F(1,29) = 2.94, p < .035). The electro-dermal activity difference between epoch four and epoch three (DEL_EDA_T) was not significantly affected by any of the independent variables. These effects are depicted in Figure 20. Change in Electro dermal Activity during Video Clip Presentation and Trial.

Figure 20. Change in Electro dermal Activity during Video Clip Presentation and Trial

4.4 Subjectively-reported Affect Measures Analyses of Independent Variable Effects

In order to determine how the different attack types influenced affect state from pre to post-task, broken down by session and video valence, an ANOVA was completed on each of the relevant affect measure dependent variables. Pre-task affect was measured after the video clip was presented but prior to task initiation. Post-task affect was measured immediately after the task was completed. The statically significant relationships found between the variables for session, attack type, video valence and the dependent affect measure variables are reported below.

4.4.1 Subjective Affect Measured with Slider Mechanism

The participant's level of arousal before task initiation, as measured with the slider mechanism (AR_AS_Pre) was significantly influenced by the attack type as a main effect (F(3,87) = 21.66, p < .001) and also was also influenced by a three-way interaction of attack type, valence of the video clip, and the session (F(3,87) = 2.77, p < .05). The participant's level of arousal after task completion, as measured with the slider mechanism (AR_AS_Post) was significantly influenced by the attack type as a main effect (F(3,87) = 4.30, p < .01).

Figure 21. Arousal, Measured with the Slider, Varied with Attack Type

The participant's valence level before task initiation, as measured with the slider mechanism (VA_AS_Pre) was significantly influenced by the attack type as a main effect (F(3,87) = 2.90, p < .04) and also was also influenced by a two-way interaction of attack type and the valence of the video clip, and the session (F(3,87) = 2.77, p < .05). The participant's valence level after task completion, as measured with the slider mechanism (VA_AS_Post) was significantly influenced by the attack type as a main effect (F(3,87) = 29.08, p < .0001). These significant effects are depicted in Figure 22. Valence, Measured with the Slider, Varied with Attack Type.

Figure 22. Valence, Measured with the Slider, Varied with Attack Type

4.4.2 Subjective Affect Measured with Grid Instrument

The participant's level of arousal before task initiation, as measured with the Grid Instrument (AR_AG_Pre) was significantly influenced by the attack type as a main effect (F(3,87) = 23.13, p < .001) and was also influenced significantly by session (F(1,29) = 6.14, p < .02). The participant's level of arousal after task initiation, as measured with the Grid Instrument (AR_AG_Post) was significantly influenced by the attack type as a main effect (F(3,87) = 6.86, p < .001). These effects are depicted in Figure 23. Arousal and Valence, Measured with the Affect Grid, Varied with Attack and Video Clip.

Error Bar Chart with SE

Figure 23. Arousal and Valence, Measured with the Affect Grid, Varied with Attack and Video Clip

The participant's valence level before task initiation, as measured with the Grid Instrument (VA_AG_Pre) was significantly influenced by the attack type as a main effect (F(3,87) = 5.09, p)< .003) as well as the valence of the video clip as a main effect (F(1,29) = 209.35, p < .001). There also was also a significant two-way interaction of attack type and the valence of the video clip (F(3,87) = 12.61, p < .001). The participant's valence level after task initiation, as measured with the Grid Instrument (VA_AG_Post) was significantly influenced by the attack type and the valence (see Figure 23. Arousal and Valence, Measured with the Affect Grid, Varied with Attack and Video Clip).

4.4.3 Subjective Affect Measured with Survey Questions

The participant's level of negative affect before task initiation, as measured with PANAS-X-N survey (PNS N Pre) was significantly influenced by the attack type as a main effect (F(3,87) = 9.71, p < .001) and was also influenced significantly by the valence of the video clip (F(1,29) =35.96, p < .001). Two significant interactions were present, those being the interaction of attack type and valence of the video clip (F(3,87) = 14.39, p < .001) and the valence of the video clip and the session (F(1,29) = 7.81, p < .01). These effects are depicted in Figure 24. PANAS-N Affect Measured Pre and Post Task.

Figure 24. PANAS-N Affect Measured Pre and Post Task

The participant's level of negative affect after task initiation, as measured with the PANAS-X-N survey (PNS_N_Post) was significantly influenced by the attack type as a main effect (F(3,87) = 17.20, p < .001) and the valence of the video clip (F(1,29) = 11.00, p < .003). These effects are depicted in Figure 24. PANAS-N Affect Measured Pre and Post Task.

The participant's level of positive affect before task initiation, as measured with PANAS-X-P survey (PNS_P_Pre) was significantly influenced by the attack type as a main effect (F(3,87) = 13.85, p < .001) and was also influenced significantly by the valence of the video clip (F(1,29) = 18.22, p < .001) as well as the session (F(1,29) = 9.74, p < .005). A single two-way significant interaction was present, specifically attack type and valence of the video clip (F(3,87) = 5.76, p < .002). These effects are depicted in Figure 25. PANAS-P Affect Measured Pre and Post Task.

Figure 25. PANAS-P Affect Measured Pre and Post Task

The participant's level of positive affect after task initiation, as measured with the PANAS-X-P survey (PNS_P_Post) was significantly influenced by the attack type as a main effect (F(3,87) = 11.12, p < .001) and the session (F(1,29) = 9.47, p < .005). These effects are depicted in Figure 25. PANAS-P Affect Measured Pre and Post Task.

4.5 Attention to System Change/Attack Variations

The age, years of education, and emotional regulation ability (STEM) were not found to be significantly related to whether participants noticed any change or attack in the system during the experimental sequence, given in

Table 7. System Change Recognition group statistics. However, there were differences in cognitive abilities between these two groups, and a main effect for Conscientiousness (F(1,31) = 5.54, p = .025). There was a main effect for SOC mean subsequent thinking time (time to complete all moves; F(1,32) = 15.46, p < .001), which was significantly shorter for those who noticed any change or attack in the system (t(32) = -2.73, p = .010). A significant main effect was not found for SOC mean initial thinking time (F(1,32) = .540, p = .468), though the group means were significantly different (t(32) = 2.09, p = .045). Additionally, Choice Reaction Time (CRT) correct latency was significantly shorter for those who noticed any change or attack in the system (t(32) = 3.52, t = .001), though no main effect was found (t = 1.52) and t = 1.52 and t = 1.52 are the system (t = 1.52).

Table 7. System Change Recognition group statistics

Group Statistics

	Notice problem				Std. Error
	in system?	N	Mean	Std. Deviation	Mean
Age	No	11	22.18	6.809	2.053
	Yes	22	25.59	10.404	2.218
Years Higher Education	No	11	14.00	1.949	.588
	Yes	22	14.00	1.662	.354
Extraversion	No	11	.598864	.2254478	.0679751
	Yes	22	.511932	.1837311	.0391716
Agreeableness	No	11	.734091	.1490691	.0449460
	Yes	22	.741477	.1646328	.0350998
Conscientiousness	No	11	.692045	.2056448	.0620042
	Yes	22	.663068	.1387914	.0295904
Emotional Stability	No	11	.571591	.1911389	.0576306
	Yes	22	.544886	.1886930	.0402295
Intellect/Imagination	No	11	.695455	.1552491	.0468094
	Yes	22	.697159	.1813036	.0386541
ERA - MER weighted	No	11	.899713	.0459214	.0138458
	Yes	22	.906936	.0454086	.0096812
ERA - PEC weighted	No	11	.690245	.0910720	.0274592
	Yes	22	.676478	.1229306	.0262089
IED - Stages completed	No	11	8.55	.820	.247
	Yes	23	8.61	.783	.163
IED - total errors	No	11	21.18	16.241	4.897
	Yes	23	19.17	13.670	2.850
SOC - mean initial thinking time	No	11	5684.3182	5190.93822	1565.12676
	Yes	23	10342.0761	6461.87801	1347.39471
SOC - mean subsequent thinking	No	11	2005.7145	2334.44784	703.86251
time	Yes	23	563.6070	738.17630	153.92040
SOC - problems solved in min	No	11	7.82	2.523	.761
moves	Yes	23	8.96	1.522	.317
CRT - mean correct latency	No	11	367.407273	58.4714623	17.6298092
	Yes	23	309.493043	37.1714241	7.7507777
CRT - max correct latency	No	11	634.27	145.138	43.761
	Yes	23	612.17	253.907	52.943
AVERAGE Score	No	11	9935.364545	13132.4286412	3959.5762172
	Yes	23	14491.400435	17979.3994632	3748.9639442

Table 8. System Change Recognition Group Differences

	Levene for Equa Varia	ality of	t-test for Equality of Means				
	F	Sia	Т	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference
Conscientiousness	5.543	Sig025*	.480	31	.634	.0289773	.0603298
SOC - mean initial thinking time	.540	.468	-2.085	32	.045*	-4657.75791	2233.71838
SOC - mean subsequent thinking time	15.461	.000*	2.729	32	.010*	1442.10759	528.40140
CRT - mean correct latency	3.766	.061	3.516	32	.001*	57.9142292	16.4693417

^{*}Indicated statically significance at *p*<.05 level

4.6 Effects of Independent Variables on Subjective Workload

Subjective workload was measured using the NASA TLX instrument. The effects of the independent variables, attack type, valence state, and session, were investigated using repeated-measures ANOVA and indicated significant effects did exist. Specifically attack type and session affected the NASA TLX Performance Rating Scale (TLX_Perf) (F(3,87) = 23.57, p < .001) and (F(1,29) = 11.52, p < .002). Attack type and session also affected the NASA TLX Effort Rating Scale (TLX_Eff) (F(3,87) = 7.92, p < .001) and (F(1,29) = 7.90, p < .001). Only attack type affected the NASA TLX Frustration Rating Scale (TLX_Frus) (F(3,87) = 34.93, p < .001). These significant effects are depicted in Figure 26. Task Load Index of Performance, Efforts, and Frustration.

Overall, the participant's subjective workload, as measured with the NASA TLX, appeared to increase during the trials in which the manual tracking task was attacked. Session, a measure of time in the trial, appeared to affect the mental workload. Specifically, the perceived temporal and mental demand appeared to be reduced overall. Here again, attack on the tracking task appeared to induce the largest physical demand, mental demand and temporal demands relative to the other attack conditions.

Attacks on the tracking task induced increased levels of frustration relative to the other attack conditions. In addition, attacks on the tracking task appeared to reduce the subjectively reported performance but induced an increase in subjectively reported effort needed to complete the task.

Figure 26. Task Load Index of Performance, Efforts, and Frustration

Attack type and session affected the NASA TLX Temporal Demand metric (TLX_TD) (F(3,87) = 15.00, p < .001) and (F(1,29) = 5.56, p < .03). The NASA TLX Mental Demand metric (TLX_MD) was significantly affected by attack type and session (F(3,87) = 12.97, p < .001) and (F(1,29) = 6.17, p < .02). The NASA TLX Physical Demand metric (TLX_PD) was significantly affected by attack type (F(3,87) = 6.93, p < .001). These significant effects are depicted in Figure 27. Task Load Index of Mental Demand, Temporal Demand, and Physical Demand.

Figure 27. Task Load Index of Mental Demand, Temporal Demand, and Physical Demand

5.0 CONCLUSIONS

The purpose of this study was to systematically examine emotional responses to information manipulation of key task parameters during task performance following emotional stimulation through the presentation of video segments. The effect of emotions on situational awareness (as reflected by a performance score) under simulated cyber attack was analyzed. By examining participants' responses to the simulated cyber attacks, we attempted to determine to what extent an individual's traits, such as personality, cognitive ability, and emotional responsiveness were related to one's vulnerability, as reflected by reduced task performance and the ability to adapt and properly respond to the attacks.

The results from this study are important for the Air Force in a number of ways. We have found that a few basic cognitive tests, such as choice reaction time, stockings of Cambridge, and the Conscientiousness component of the big five personality constructs can predict whether a person will notice information manipulations in their system. This is important for both offensive targeting and defensive personnel vectoring purposes. This study has also found that the five factor model of personality, emotional regulation ability, and certain attacks interact to mediate emotional state. This makes it possible to actually predict an emotional state given the person's personality, emotional regulation ability and the specific information attack type desired.

This study has also determined that significant interactions exist among the variables for task performance, attack type, video valence, gender, age, cognitive ability, and emotional management ability. This is important because it has been unclear and unstudied previously whether emotional state or emotional regulation ability actually influenced basic task performance in an emotional environment (such as in the real world), which evidence from this study has shown to be the case. In fact, negative affect states appear to be more beneficial for task performance in an affective environment than positive affect states, which is interesting. Perhaps this effect is due to the focusing aspect of the negative clips and negative affect states, which focuses the person on the task at hand, or makes the person take the task more seriously than when in a positive state. Effort put into situational awareness and hence task performance is apparently influenced by a person's emotional state. This could be useful to the Air Force in crafting certain influence operations in order to calm the target audience, or lull them into a positive affect state or at least avoid negative states when the desire is to decrement the target's task performance.

This section discusses the empirical results reported in Section Four of this report, the implications of those results, and conclusions drawn from the results. The research questions to be answered were:

- 1. To what extent does performance of a complex task differ when affected by manipulation of underlying information elements?
- 2. To what extent are an individual's traits associated with differing abilities across individuals to "fight through" an informational attack?

- 3. Is an individual's cognitive state associated with differing levels of coping with additional demands created by informational attack?
- 4. Can an individual's physiological state accurately reflect differences in emotional state caused by informational attack?
- 5.1 Question 1 To what extent does performance of a complex task differ when affected by manipulation of underlying information elements and can an affective computing technique mitigate these effects?

It is clear from the results that task performance can be degraded by manipulating key task informational elements. The level of peroformance demonstrates a significant variation across the tasks used in the study. In addition, the performance degradation appears to be somewhat dependent on the dynamics of the task with the more dynamic task experiencing the largest reduction and a slower-moving task showing a much smaller level of reduction. There could be alternative rationale that would affect the level of performance degradation. such as task placement (the larger degradation being associated with the more centrally located task display) or the task under control of the joystick versus keyboard-only input. It should be noted that after the complete set of trials had been completed, approximately 66% of the participants reported noticing when the informational attack had occurred and approximately 33% did not report noticing that an informational attack had occurred. Performance degradation did change over time as well. Session 2 performance improved over performance in Session 1. This could have been due to being more familiar with the tasks and attacks themselves, or the sensitivity to the affect-inducing stimuli had changed, or that there was an induced affect change over the duration of the sixteen trials. The information attack used in this study was a persistently occurring attack. The participant was not able to reset their system once the presence of the attack was noticed but had to continuously adapt to the errors induced by the attack. Perhaps a different result would occur if the participant was able to correct a single occurrence of the attack allowing for the most obvious attack to be counted more quickly.

The valence of the video clip shown directly before execution of the task did change the participant's affect but was not a significant factor in the performance metric. There was a multiple-factor interaction that was significant that involved the valence of the video clip. It is possible this mitigation did occur but was a function of the task itself and also was a function of time. It is clear from the data that the overall performance of the participants increased when their subjectively reported valence was negative relative to performance when their reported valence was positive.

5.2 Question 2 - To what extent are an individual's traits associated with differing abilities across individuals to "fight through" an informational attack?

Several individual traits were measured during this study, including cognitive abilities, emotional regulation and management, the big-five personality elements, and traditional demographics. Several of the measured cognitive traits are negatively correlated with the participant's ability to perform the task during the informational attack. The numbers of, and

time of, solved problems from two of the cognitive abilities tests support an association of performance degradation differences across Attack Type and Session indicating a stronger effect during attacks creating the largest performance degradation. However, these relationships demonstrate significance in 3-way and 4-way interactions with the two independent variables and Session indicating that the relationships are likely extremely complex and time dependent. To further illuminate this point, the cognitive trait measures were correlated with combination of the performance-based dependent measures and shown in Appendix J through N. Several interesting associations are documented in the appendices worthy of further research to fully understand their implications.

5.3 Question 3 - Is an individual's cognitive state associated with differing levels of coping with additional demands created by informational attack?

The participant's initial affect did not demonstrate an association with performance changes but as affect was manipulated during the experiment, differences in performance associated with cognitive state were measurable. The participant's initial cognitive state, called their cognitive state baseline, in this study, was measured with subjective reporting, using a mechanical slider, and reported graphically using an affect grid. None of these measurement techniques provided data that supported a significant relative performance score. During the experiment, the participant's affect was measured both before, and after, performance of the task. The participant's affect after performance of the task was significantly affected by the Attack Type with the two most difficult Attack Types being associated with slightly lower arousal levels and more negative valence levels. Curiously, the affect state before performance of the task also produced arousal and valence level differences even though the attack had not yet occurred during that trial when that measure was taken. This effect was observed in the subjective measures of affect as well as some of the physiological data. Ordering was tested and did not support the cause of this effect. Several explanations are possible.

The first being that the affect measured before performance of the task is not totally independent of the previous trial and the persistence of the affect is creating carry over from trial to trial. The second possible explanation might be that there is an emotional anticipation being measured. It has been shown in the literature that anticipation of a stressful even can product an emotional response before the emotional event occurs in time and that anticipation may be what is being measured. The fact that the effect shows up in several measures supports the speculation that the effect is not a statistical anomaly and worth further research.

Session was a factor in several of the affect state measures either as a man effect or as a factor in an interaction. In general, it was demonstrated that affect in Session 2 was reduced rather than that measured in Session 1. This may indicate some desensitization from the participant to the video clip stimuli as well as developing coping mechanisms for the information attack manipulations. This is supported with increased performance in Session 2 relative to Session 1.

It can be seen from these figures that the fuel attack had the largest incremental effect on arousal, while other attacks marginally changed arousal levels between the two valence induction clip types.

The participant valence was initially altered pre-task in the direction of the respective clip valence type, followed by the task and attack type which interacted to evoke the post-task affect state. It is clear that valence recovered toward the subject baseline during the task in both positive and negative clip valence conditions, and in general across attack types. Valence after positive conditional attacks was less than pre-task, meaning the task caused a negative change in valence after positive clips. Valence after negative conditional attacks was greater than pre-task, meaning the task caused a positive change in valence after negative clips. Essentially, the task brought the participant's valence level back toward the participant baseline state. The tracking attack in positive valence conditions had a larger 'return' effect, suggesting that this attack was the most unpleasant attack type. During negative conditions, there was essentially no 'return' effect, suggesting that the participant's valence level was already very unpleasant due to the negative clip, and that the tracking attack merely kept participants in this unpleasant state. Session also caused a difference in the degree of valence change from pre to post task affect. Session 1 mean valence changes from pre to post-task were essentially zero, while Session 2's mean valence changes from pre to post-task tended to be positive, though very small.

Positive affect appears to increase relatively similarly between valence conditions from pre to post-task. This means the task itself caused general positive affect to increase similarly across attacks, except the No Attack condition which showed a very small change from pre-task affect state after positive clips. The tracking attack had a similar effect on affect state as that which was reflected in the affect grid valence measure, being that it had a detrimental effect on positive affect and an incremental effect on negative affect.

Overall, it can be concluded that the task itself moderated affect state and brought it back toward the participant baseline affect state. The tracking attack caused the most change in affect state, being that it had the most negative effect, followed by the fuel attack.

5.4 Question 4 - Can an individual's physiological state accurately reflect differences in emotional state caused by informational attack?

The physiological measures do reflect emotional state but in a relative complex fashion. Physiological measures were significantly affected by the independent variables as well as Session during this study. Heart rate measured after video clip presentation, and a change in heart rate measured across the video clip, was affected by the valence of the video clip with negative clips reducing heart rate relative to positive video clip presentation. Overall heart rate was reduced significantly when the negative video clips were shown relative to the positive video clip trials. Additionally, overall heart rate in Session 2 was lower than Session 1. Heart rate measured during the final 12 seconds of the video clip, and across the video clip presentation time, was significantly affected by the Attack Type. However, the attack itself had not yet begun when this heart rate measure was collected. As these responses are

similar in pattern to subjectively reported affect state, the causes may be similar to a similar pattern observed in the affect state data and may be an anticipatory response.

Pulse transit times, a derived metric that is associated with negative changes in blood pressure, supported elevation (lower blood pressure) when positive valence video clips were presented and reduced (higher blood pressure) when negative valence video clips were presented. This effect, while still present, was greatly reduced in Session 2 relative to Session 1. Perhaps the cause of this desensitization is that the same video clips used in Session 1 were re-used in Session 2 in a differing order. Pulse Transit Times measured across trials during Session 2 support positive correlation with overall performance, in that as performance was reduced, so were the participant's Pulse Transit Time. This, in turn, would indicate a rise in blood pressure as performance was reduced and as the overall task was made more difficult and frustration built.

The simulated information attacks on the tracking task were indicative of an increase to the Electro dermal Activity (EDA) relative to the other simulated attack types used in this study during Session 2 but not during Session 1. This effect is most clearly seen after the video clip presentation with the presentation of negative valence clips producing the highest EDA values. The change in EDA during the presentation of the video clip is affected by the attack type which is interesting as the attack for that trial has not yet occurred. This pattern is apparent in several of the metrics used in this study and it could be speculated that it may be associated with anticipation of the task with attack that is about to start for the participant, or perhaps a persistent emotional state created by the previous task with attack resulting in a carryover effect.

5.5 Miscellaneous Relevant Analyses

5.5.1 Visual Inspection of Video Clip Valence:

Results from the analyses of performance suggest that the presentation of negative valence film clips reduces the degradation of performance induced by the simulated information attacks. These analyses also suggested that negative clips were more effective at inducing the target affect state than positive clips. This may be the true reason for the difference between different valence condition scores in the first session; not purely due to the valence of the clip, but due to the efficacy of the affect induction clip. One could speculate that in theory, positive and negative valence stimuli of equal valence induction efficacy may have the same magnitude and direction of effect on task performance when compared to a neutral or no stimulus control condition. However, it may be difficult, if not impossible to achieve a perfect balance between a pair of video clips (one positive and one negative). In this study, there was no attempt to balance the content of the video stimuli, only the number of positive and negative clips utilized. There is no evidence in this study to support observable differences in effects due to arousal differences under positive or negative valence conditions.

It is possible that the induction of the target affect state during the negative valence conditions was more effective than during the positive conditions. Target affect state

induction for Session 2 was not as effective as in Session 1, suggesting that seeing the clips a second time does not induce affect states to the same degree. Both the Affect Grid and Affect Slider Bar measures detected higher arousal for Clip 3 in session 1 than session 2. However, only the Affect Grid measure detected a difference between arousal levels for positive clips between sessions, with session 1 clips rating higher on arousal than session 2 clips. This discrepancy would suggest a measurement imperfection between the grid and slider measures, when they should theoretically report the same values. The continuous affect grid supported detection of significant differences between positive and negative clips on valence, but not arousal, and between sessions on valence only between clips 1 and 8. Given this presence, it seems reasonable to conclude that positive conditions induced slightly higher levels of arousal in participants in the first session than second session, but there was no apparent difference in arousal levels between positive and negative clips, and that the target affect states were effectively induced differentially.

Visually examining graphs for general positive/negative affect ratings relative to the subject baselines; different clips had somewhat different induction effects. This is not too surprising. Negative clips 5 and 8 appear to be rated significantly higher for negative affect than all the other clips, whereas the other two negative clips (6 & 7) are only marginally higher on negative affect than the positive clips (1-4). Additionally, there is very little difference between clips 2-8 on positive affect, except clip 1 which appears to produce an increased affect level than the rest.

There may have been individual differences in induced valence between the eight clips. Because these clips have induced differing levels of valence and general affect within the clip-type group (positive vs. negative), this could bias the performance data when comparing attack types between positive and negative conditions. Although the eight treatment conditions were counterbalanced in their order of presentation to the participants, the video clips were paired across attack types (positive and negative), but were not randomly assigned across the attack types. For example, Clips 1 & 5 was only paired with No Attack, Clips 2 & 6 was only paired with the Tracking Attack, Clips 3 & 7 was only paired with the Fuel Attack, and Clips 4 & 8 was only paired with the Score Display Attack. It is not apparent that this allocation influenced the results. However, the presumption that all positive and negative clips would induce similarly divergent ratings of affect may not be factual in this study. The magnitude of this potential effect of this is not known.

5.5.2 Session Differences Analysis:

Additionally, the conditional positive affect divergence effect was larger in magnitude in the second session (t(33) = -4.26, p < .001) than the first session (t(33) = -3.14, p = .004), while the conditional negative affect divergence effect was smaller in magnitude in the second session (t(33) = 5.65, p < .001) than the first session (t(33) = 6.10, t = .001). The positive clip difference between sessions on positive affect (t(33) = -3.91, t = .001), negative clip difference between sessions on positive affect (t(33) = -3.76, t = .001), and negative clip difference between sessions on negative affect (t(33) = -2.62, t = .013) were all significant. Negative affect mean ratings were not significantly differently between sessions for positive clips (t(33) = .32, t = .751).

5.6 Future Research

The study of affect's role in decision making and situation awareness is still in its infancy. This study has uncovered several interesting associations between information manipulations, performance degradation, and state and trait influences. However, there is still much to be understood. Maturation of sensor technology is needed to enable all of the physiological and behavioral measures to be obtained remotely. Facial expression, as measured by video should be explored for its accuracy and temporal characteristics. An experimental technique should be developed and tested to differentiate anticipatory affect response from carry-over effects raising the independence of dependent variables used in repeated measure designs.

This study utilized one participant at a time. Earlier research anecdotally indicated emotional response to information attack when operating in teams. Studying teams would be a worthy research area. Additionally, it would useful to understand how training may enhance, or reduce, the effectiveness of individual and teams operating in this environment. And finally, but very importantly, the characteristics of task and information manipulation techniques should be fully mapped against their associated contributions to performance degradation as well as mental workload, situation awareness, and decision-making impacts. In this way, better defense of information attack can be developed and the potential for information attack on affect can be operationalized in the future.

Bibliography

- Abele, A., Silvia, P., & Zöller-Utz, I. (2005). Flexible effects of positive mood on self-focused attention. *Cognition and Emotion*, 19(4), 623-631.
- Ahn, H. I., Teeters, A., Wang, A., Breazeal, C., & Picard, R. W. (2007). Stoop to conquer: Posture and affect interact to influence computer users' persistence. *The 2nd International Conference on Affective Computing and Intelligent Interaction*. Lisbon, Portugal.
- Austin, E. J. (2010). Measurement of ability emotional intelligence: Results for two new tests. *British Journal of Psychology*, *101*, 563-578.
- Bartolini, E. (2011). *Eliciting emotion with film: Developing a stimulus set*. Thesis, Wesleyan University.
- Bell, H., & Lyon, D. (2000). Using observer ratings to assess situation awareness. In M. Endsley (Ed.), *Situation Awareness Analysis and Measurement*. Mahwah, NJ: Laurence Erlbaum Associates.
- Bradley, M. M., & Lang, P. J. (2007). The International Affective Picture System (IAPS) in the study of emotion and attention. In J. Coan, & J. Allen (Eds.), *Handbook of Emotion Elicitation and Assessment*. New York: Oxford University Press.
- Branscombe, N. R. (1985). Effects of hedonic valence and physiological arousal on emotion: A comparison of two theoretical perspectives. *Motivation and Emotion*, *9*, 153-169.
- Chang, C. Y., Tsai, J. S., Wang, C. J., & Chung, P. C. (2009). Emotion recognition with consideration of facial expression and physiological signals. *IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology*, (pp. 278-283).
- Comstock, J., & Arnegard, R. (1992). The multi-attribute task battery for human operation workload and strategic behavior research. NASA Technical Memorandum No. 104174.
- Davidson, R. J. (1994). On emotion, mood and related affective constructs. In P. Ekman, & R. J. Davidson (Eds.), *The Nature of Emotion: Fundamental Questions* (pp. 94-96). New York: Oxford University Press.
- Davidson, R. J., Ekman, P., Saron, C. D., Senulis, J. A., & Friesen, W. V. (1990). Approach-withdrawal and cerebral asymmetry: Emotional expression and brain physiology. *Journal of personality and social psychology*, *8*, 330-341.
- D'Mello, S., Jackson, T., Craig, S., Morgan, B., Chipman, P., White, H., & Graesser, A. (2008). AutoTutor detects and responds to learners affective and cognitive states. *Workshop on Emotional and Cognitive Issues at the International Conference on Intelligent Tutoring Systems*.
- Eich, E., Ng, J. T., Macaulay, D. P., Percy, A. D., & Grebneva, I. (2007). Combining music with thought to change mood. In J. A. Coan, & J. B. Allen (Eds.), *Handbook of emotion elicitation and assessment* (pp. 124-136).

- Ekman, P. (2007). The directed facial action task: Emotional responses without appraisal. In J. Coan, & J. Allen (Eds.), *Handbook of Emotion Elicitation and Assessment*. New York: Oxford University Press.
- Ellis, H. C., Thomas, R. L., & Rodriguez, I. A. (1984). Emotional mood states and memory: Elaborative encoding, semantic processing, and cognitive effort. *Journal of Experimental Psychology*, *10*, 470-482.
- Endsley, M. (1995). Towards a theory of situation awareness in dynamic systems. *Human Factors*, *37*, 32-64.
- Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (n.d.). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. *Behavioral Research Methods*, 39, 175-191.
- Fernandez, R. (2004). A computational model for the automatic recognition of affect in speech. Doctoral dissertation, MIT, Media Arts and Science.
- Fernandez, R. (2004). A computational model for the automatic recognition of affect in speech. Dissertation, MIT, Media Arts and Science.
- Flanagan, D. P., Ortiz, S. O., & Alfonso, V. C. (2007). CHC broad and narrow ability classification tables for tests published between 1996-2007. In A. Kaufman, & N. Kaufman (Eds.), *Essentials of Cross-Battery Assessment Second Edition* (pp. 298-313). Hobokek, NJ: John Wiley & Sons.
- Flanagan, D. P., Ortiz, S. O., & Alfonso, V. C. (2007). The Cattell-Horn-Carroll (CHC) Theory of Cognitive Abilities. In A. Kaufman, & N. Kaufman (Eds.), *Essentials of Cross-Battery Assessment Second Addition* (pp. 269-297). Hoboken, NJ: John Wiley & Sons.
- Fredrickson, B. L., & Levenson, R. W. (1998). Positive emotions speed recovery from the cardiovascular sequelae of negative emotions. *Cognition and Emotion*, 12(2), 191-220.
- Gable, P., & Harmon-Jones, E. (2010). The motivational dimensional model of affect: Implications for breadth of attention, memory, and cognitive categorization. *Cognition and Emotion*, 24(2), 322-337.
- Gilbert, B., & Christopher, M. (2010). Mindfulness-based attention as a moderator of the relationship between depressive affect and negative cognitions. *Cognitive Therapy Research*, *34*, 514-521.
- Goldberg, L. R. (1992). The development of markers for the Big-Five factor structure. *Psychological Assessment*, 40, 26-42.
- Goldberg, L. R., Johnson, J. A., Eber, H. W., Hogan, R., Ashton, M. C., & al, e. (2006). The international personality item pool and the future of public-domain personality measures. *Journal of Research in Personality*, 40, 84-96.

- Gray, E. K., & Watson, D. (2001). Emotion, mood and temperament: Similarities, differences and a synthesis. In R. L. Payne, & C. L. Cooper (Eds.), *Emotions at work: Theory, research and applications in management* (pp. 21-43). West Sussex, UK: Wiley.
- Gross, J. J., & Levenson, R. W. (1995). Emotion elicitation using films. *Cognition and Emotion*, 9(1), 87-108.
- Haag, A., Gorozny, S., Schaich, P., & Williams, J. (2004). Emotion recognition using biosensors: First steps towards an automatic system. *LNCS*, 3068, 36-48.
- Harmon-Jones, E., Amodio, D. M., & Zinner, L. R. (2007). Social psychological methods of emotion elicitation. In J. Coan, & J. Allen (Eds.), *Handbook of Emotion Elicitation and Assessment*. New York: Oxford University Press.
- Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. In P. A. Hancock, & N. Meshkati (Eds.), *Human Mental Workload*. Amsterdam: North Holland Press.
- Hirschfield, L. M. (2009). Combining electroencephalograph and near infrared spectroscopy to explore users' mental workload states. *HCI International*.
- John, O. P. (1989). Towards a taxonomy of personality descriptors. In D. M. Buss, & N. Cantor (Eds.), *Personality psychology: recent trends and emerging directions* (pp. 261-271). New York: Guilford Press.
- John, O. P. (1990). The "Big Five" factor taxonomy: Dimension of personality in the natural language and questionnaires. In L. A. Pervin (Ed.), *Handbook of personality: Theory and research* (pp. 66-100). New York: Guilford Press.
- John, O. P., Naumann, L. P., & Soto, C. J. (2008). Paradigm shift to the integrative Big-Five trait taxonomy: History, measurement, and conceptual issues. In O. P. John, R. W. Robins, & A. Pervin (Eds.), *Handbook of Personality: Theory and research* (pp. 114-158). New York: Guilford Press.
- Kim, J., & Andrè, E. (2008). Emotion recognition base on physiological changes in music listening. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 30(12), 2067-2083.
- Kim, J., & Andrè, E. (2008). Emotion-specific dichotomous classification and feature-level fusion of multichannel biosignals for automatic emotion recognition. *IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems*, (pp. 114-119).
- Kim, K. H., Bang, S. W., & Kim, S. R. (2004). Emotion recognition system using short-term monitoring of physiological signals. *Medical and Biological Engineering and Computing*, 42(3), 419-427.
- Kleider, H., Parrott, D., & King, T. (2010). Shooting behavior: How working memory and negative emotionality influence police officer shoot decisions. *Applied Cognitive Psychology*, 24, 707-717.

- Kreibig, S. D., Wilhelm, F. H., Roth, W. T., & Gross, J. J. (2007). Cardiovascular, electrodermal, and respiratory response patterns to fear and sadness inducing films. *Psychophysiology*, 44, 787-806.
- Laird, J. D., & Strout, S. (2007). Emotional behaviors as emotional stimuli. In J. Coan, & J. Allen (Eds.), *Handbook of Emotion Elicitation and Assessment*. New York: Oxford University Press.
- Lang, P. J. (1978). Anxiety: Toward a psychophysiological definition. In H. S. Akiskal, & W. L. Webb (Eds.), *Psychiatric Diagnosis: Exploration of Biological Criteria* (pp. 265-389). New York: Spectrum.
- MacCann, C., & Roberts, R. D. (2008). New paradigms for assessing emotional intelligence: theory and data. *Emotion*, *8*, 540-551.
- Mayer, J. D., Salovey, P., Caruso, D. R., & Sitarenios, G. (2001). Emotional intelligence as a standard intelligence. *Emotion*, *1*, 232-242.
- Mota, S., & Picard, R. W. (2003). Automated posture analysis for detecting learner's interest level. *Conference on Computer Vision and Pattern Recognition Workshop*, *3*, p. 49.
- Neumann, R., Seibt, B., & Strack, F. (2001). The influence of mood on the intensity of emotional responses: Disentangling feeling and knowing. *Cognition and Emotion*, *15*, 725-747.
- Novak, D., Mihelj, M., & Munih, M. (2012). A survey of methods for data fusion and system adaptation using autonomic nervous system responses in physiological computing. *Interacting with Computers*, 24, 154-172.
- Parkinson, B., Totterdell, P., Brinner, R. B., & Reynolds, S. (1996). *Changing Moods: The psychology of mood and mood regulation*. London: Addison-Wesley Longman.
- Picard, R. (1997). Affective Computing. Cambridge, MA: The MIT Press.
- Picard, R. W., & Scheirer, J. (2001). The Galvactivator: A glove that senses and communicates skin conductivity. *Proceedings from the 9th International Conference on Human-Computer Interaction*, (pp. 1538-1542). New Orleans, LA.
- Picard, R. W., Vyzas, E., & Healey, J. (2001). Toward machine emotional intelligence: Analysis of affective physiological state. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 23(10), 1175-1191.
- Poh, M. Z., McDuff, D. J., & Picard, R. W. (2011). Advancements in non-contact, multiparameter physiological measurements using a webcam. *IEEE Transactions on Biomedical Engineering*, 58, pp. 7-11.
- Poh, M. Z., Swenson, N. C., & Picard, R. W. (2009). Comfortable sensor wristband for ambulatory assessment of electrodermal activity. *1st Biennial Conference of the Society for Ambulatory Assessment*. Greifswald, Germany.

- Poh, M., Kim, K., Goessling, A., Swenson, N., & Picard, R. (2011). Cardiovascular monitoring using earphones and a mobile device.
- Qi, Y., & Picard, R. W. (2002). Context-sensitive bayesian classifiers and application to mouse pressure pattern classification. *Proceedings of International Conference on Pattern Recognition*. Quebec City, Canada.
- Roberts, N. A., Tsai, J. L., & Coan, J. A. (2007). Emotion elicitation using dyadic interaction tasks. In J. Coan, & J. Allen (Eds.), *Handbook of Emotion Elicitation and Assessment*. New York: Oxford University Press.
- Robinson, D. T., Smith-Lovin, L., & Wisecup, A. K. (2006). Affect control theory. In J. E. Stets, & J. H. Turner (Eds.), *Handbook of the Sociology of Emotions*. New York: Springer.
- Rosenberg, E. L., & Ekman, P. (1994). Coherence between expressive and experiential systems in emotion. *Cognition and Emotion*, *8*, 201-229.
- Rottenberg, J., Ray, R. D., & Gross, J. J. (2007). Emotion elicitation using films. In J. A. Coan, & J. J. Allen (Eds.), *Handbook of emotion elicitation and assessment* (pp. 9-28). New York, NY, US: Oxford University Press.
- Russell, J. A., & Mehrabian, A. (1977). Evidence for a three-factor theory of emotions. *Journal of Research in Personality*, 11, 273-294.
- Russell, J. A., Weiss, A., & Mendelsohn, G. A. (1989). Affect-grid: A single-item scale of pleasure and arousal. *Journal of Personality and Social Psychology*, *57*, 493-502.
- Salas, E., Prince, C., Baker, D. P., & Shrestha, L. (1995). Situation awareness in team performance: implications for measurement and training. *Human Factors*, *37*(1), 123-136.
- Salmon, P., Stanton, G., Jenkins, D., Ladva, D., Rafferty, L., & Young, M. (2009). Measuring situation awareness in complex systems: comparison of measures study. *International Journal of Industrial Ergonomics*, 39, 490-500.
- Salmon, P., Stanton, N., Walker, G., Baber, C., Jenkins, D., & McMaster, R. (2008). What really is going on? Review of situation awareness models for individuals and teams. *Theoretical Issues in Ergonomics Science*, *9*, 297-323.
- Saucier, G. (1997). Effects of variable selection on the factor structure of person descriptors. *Journal of Personality Psychology*, 73, 1296-1312.
- Schaefer, A., Nils, F., Sanchez, X., & Philippot, P. (2010). Assessing the effectiveness of a large database of emotion-eliciting films: A new tool for emotion researchers. *Cognition and Emotion*, 24(7), 1153-1172.
- Scherer, K. R. (2004). Which emotion can be induced by music? What are the underlying mechanisms? And how can we measure them? *Journal of New Music Research*, 33(3), 239-251.

- Selcon, S. J., & Taylor, R. M. (1990). Evaluation of the situation awareness rating scale (SART) as a tool for aircrew systems design. *Situation Awareness in Aerospace Operations*, (AGARD-CP-478), 5/1-5/8.
- Smith, K., & Hancock, P. (1995). Situation awareness is adaptive, externally directed consciousness. *Human Factors*, *37*(1), 137-148.
- Tellegen, A. (1985). Structures of mood and personality and their relevance to assessing anxiety, with an emphasis on self-report. In A. H. Tuma, & J. D. Maser (Eds.), *Anxiety and the anxiety disorders* (pp. 681-706). Hillsdale, NJ: Erlbaum.
- Tomarken, A. J., Davidson, R. J., & Henriques, J. B. (1990). Resting front brain asymmetry predicts affective responses to films. *Journal of Personality and Social Psychology*, *59*, 791-801.
- Vidulich, M., Stratton, M., & Wilson, G. (1994). Performance-based and physiological measures of situational awareness. *Aviation, Space, and Environmental Medicine*, 65(5), 7-12.
- Villon, O., & Lisetti, C. (2007). Toward recognizing individual's subjective emotion from physiological signals in practical application. *Twentieth IEEE International Symposium on Computer-Based Medical Systems*, (pp. 357-362).
- Wagner, J., Kim, J., & Andre, E. (2005). From physiological signals to emotions: Implementing and comparing selected methods for feature extraction and classification. *IEEE International Conference on Multimedia and Expo*, (pp. 940-943).
- Watson, D. (2000). *Mood and Temperament*. New York: Guilford Press.
- Watson, D., & Clark, L. A. (1994). The vicissitudes of mood: A schematic model. In P. Ekman, & R. J. Davidson (Eds.), *The Nature of Emotion* (pp. 400-405). New York: Oxford University Press.
- Watson, D., & Clark, L. A. (1999). The PANAS-X: Manual for the Positive and Negative Affect Schedule Expanded Form.
- Watson, D., & Tellegen, A. (1985). Toward a consensual structure of mood. *Psychological Bulletin*, 98, 219-235.
- Wiens, S., & Ohman, A. (2007). Probing unconscious emotional processes: On becoming a successful masketeer. In J. Coan, & J. Allen (Eds.), *Handbook of Emotion Elicitation and Assessment*. New York: Oxford University Press.
- Wilson, T. D., & Gilbert, D. T. (2003). Affective forecasting. In M. P. Zanna (Ed.), *Advances in Experimental Social Psychology* (pp. 345-411). San Diego: Academic Press.
- Wioleta, S. (2013). Using Physiological Signals for Emotion Recognition. *6th International Conference on Human System Interactions (HSI)* (pp. 556-561). Sopot: Poland.

APPENDIX A. FILM RESPONSE QUESTIONNAIRE

Had you seen this film before?	_No	Yes		
Did you close your eyes or look aw	ay during t	his scene?	No	Yes

APPENDIX B. DEMOGRAPHICS QUESTIONNAIRE

1)	AGE:				
2)	SEX: M / F				
3)	Military member? Y / N				
4)	Higher Education level completed (please circle the highest completed)				
	• None				
	• Freshman				
	• Sophomore				
	• Junior				
	• Senior or above				
5)	Current Occupation:				
6)	Do you require the use of glasses or contacts? Y / N				

APPENDIX C. SITUATIONAL TEST OF EMOTION MANAGEMENT (STEM)

Instructions (multiple-choice form)

In this test, you will be presented with a few brief details about an emotional situation, and asked to choose from four responses the most effective course of action to manage both the emotions the person is feeling and the problems they face in that situation.

Although more than one course of action might be acceptable, you are asked to choose what you think the most effective response for that person in that situation would be.

Remember, you are not necessarily choosing what you would do, or the nicest thing to do, but choosing the most effective response for that situation.

Note: items marked with an asterisk were excluded from Study 2. Numbers in parentheses refer to expert scoring weights: (1) the mean rating of experts, and (2) the proportion of experts selecting that option.

- 1. Lee's workmate fails to deliver an important piece of information on time, causing Lee to fall behind schedule also. What action would be the most effective for Lee?
- (a) Work harder to compensate. (3.2/0)
- (b) Get angry with the workmate. (2.6/0)
- (c) Explain the urgency of the situation to the workmate. (5.2/1.000)
- (d) Never rely on that workmate again. (2.4/0)
- 2. Rhea has left her job to be a full-time mother, which she loves, but she misses the company and companionship of her workmates. *What action would be the most effective for Rhea?*
- (a) Enjoy being a full-time mom. (2.8/0)
- (b) Try to see her old workmates socially, inviting them out. (4.4/.250)
- (c) Join a playgroup or social group of new mothers. (4.8/.667)
- (d) See if she can find part time work. (2.8/.083)
- 3. Pete has specific skills that his workmates do not and he feels that his workload is higher because of it. What action would be the most effective for Pete?
- (a) Speak to his boss about this. (4.6/.833)
- (b) Start looking for a new job. (2.4/0)
- (c) Be very proud of his unique skills. (3.2/.083)
- (d) Speak to his workmates about this. (3.8/.083)
- * 4. Mario is showing Min, a new employee, how the system works. Mario's boss walks by and announces Mario is wrong about several points, as changes have been made. Mario gets on well with his boss, although they don't normally have much to do with each other. What action would be the most effective for Mario?
- (a) Make a joke to Min, explaining he didn't know about the changes. (4.0/.333)
- (b) Not worry about it, just ignore the interruption. (2.2/0)
- (c) Learn the new changes. (4.6/.417)

- (d) Tell the boss that such criticism was inappropriate. (3.2/.250)
- 5. Wai-Hin and Connie have shared an office for years but Wai-Hin gets a new job and Connie loses contact with her. *What action would be the most effective for Connie?*
- (a) Just accept that she is gone and the friendship is over. (2.6/0)
- (b) Ring Wai-Hin an ask her out for lunch or coffee to catch up. (4.6/0)
- (c) Contact Wai-Hin and arrange to catch up but also make friends with her replacement. (5.6/.917)
- (d) Spend time getting to know the other people in the office, and strike up new friendships. (4.4/.083)
- * 6. Martina is accepted for a highly sought after contract, but has to fly to the location. Martina has a phobia of flying. What action would be the most effective for Martina?
- (a) See a doctor about this. (4.4/.750)
- (b) Don't go to the location. (1.4/0)
- (c) Just get through it. (2.8/0)
- (d) Find alternative travel arrangements. (3.0/.250)
- 7. Manual is only a few years from retirement when he finds out his position will no longer exist, although he will still have a job with a less prestigious role. What action would be the most effective for Manual?
- (a) Carefully consider his options and discuss it with his family. (5.0/.750)
- (b) Talk to his boss or the management about it. (4.4/.250)
- (c) Accept the situation, but still feel bitter about it. (2.0/0)
- (d) Walk out of that job. (1.0/0)
- 8. Alan helps Trudy, a peer he works with occasionally, with a difficult task. Trudy complains that Alan's work isn't very good, and Alan responds that Trudy should be grateful he is doing her a favor. They argue. What action would be the most effective for Alan?
- (a) Stop helping Trudy and don't help her again. (1.8/.167)
- (b) Try harder to help appropriately. (2.8/.083)
- (c) Apologize to Trudy. (2.8/.083)
- (d) Diffuse the argument by asking for advice. (4.6/.667)
- 9. Surbhi starts a new job where he doesn't know anyone and finds that no one is particularly friendly. What action would be the most effective for Surbhi?
- (a) Have fun with his friends outside of work hours. (3.8/0)
- (b) Concentrate on doing his work well at the new job. (4.0/.167)
- (c) Make an effort to talk to people and be friendly himself. (5.4/.833)
- (d) Leave the job and find one with a better environment. (2.4/0)
- 10. Darla is nervous about presenting her work to a group of seniors who might not understand it, as they don't know much about her area. What action would be the most effective for Darla?
- (a) Be positive and confident, knowing it will go well. (4.0/0)
- (b) Just give the presentation. (2.8/0)
- (c) Work on her presentation, simplifying the explanations. (5.2/.667)

- (d) Practice presenting to laypeople such as friends or family. (5.2/.333)
- 11. Andre moves away from the city his friends and family are in. He finds his friends make less effort to keep in contact than he thought they would. What action would be the most effective for Andre?
- (a) Try to adjust to life in the new city by joining clubs and activities there. (4.8/0)
- (b) He should make the effort to contact them, but also try to meet people in his new city. (5.6/1.000)
- (c) Let go of his old friends, who have shown themselves to be unreliable. (2.2/0)
- (d) Tell his friends he is disappointed in them for not contacting him. (3.2/0)
- 12. Helga's team has been performing very well. They receive poor-quality work from another team that they must incorporate into their own project. *What action would be the most effective for Helga?*
- (a) Don't worry about it. (1.8/0)
- (b) Tell the other team they must re-do their work. (4.6/.417)
- (c) Tell the project manager about the situation. (4.6/.583)
- (d) Re-do the other team's work to get it up to scratch. (2.6/0)
- 13. Clayton has been overseas for a long time and returns to visit his family. So much has changed that Clayton feels left out. What action would be the most effective for Clayton?
- (a) Nothing it will sort itself out soon enough. (2.6/0)
- (b) Tell his family he feels left out. (4.4/.167)
- (c) Spend time listening and getting involved again. (5.4/.750)
- (d) Reflect that relationships can change with time. (4.6/.083)
- * 14. Katerina takes a long time to set the DVD timer. With the family watching, her sister says "You idiot, you're doing it all wrong, can't you work the video?" Katerina is quite close to her sister and family. What action would be the most effective for Katerina?
- (a) Ignore her sister and keep at the task. (4.0/.167)
- (b) Get her sister to help or to do it. (3.6/.667)
- (c) Tell her sister she is being mean. (3.6/.167)
- (d) Never work appliances in front of her sister or family again. (1.6/0)
- * 15. Benjiro's parents are in their late 80s and living interstate in a house by themselves. He is worried that they need some help but they angrily deny it any time he brings up the subject. What action would be the most effective for Benjiro?
- (a) Visit frequently and get others to check on them. (4.4/.667)
- (b) Believe his parents' claims that they are fine. (3.0/.167)
- (c) Keep telling his parents his concerns, stressing their importance. (4.4/.167)
- (d) Force his parents to move into a home. (1.4/0)
- * 16. Max prides himself on his work being of the highest quality. On a joint project, other people do a lousy job, assuming that Max will fix their mistakes. What action would be the most effective for Max?
- (a) Forget about it. (1.4/0)

- (b) Confront the others, and tell them they must fix their mistakes. (4.4/.750)
- (c) Tell the project manager about the situation. (4.0/.250)
- (d) Fix the mistakes. (2.4/0)
- 17. Daniel has been accepted for a prestigious position in a different country from his family, who he is close to. He and his wife decide it is worth relocating. What action would be the most effective for Daniel?
- (a) Realize he shouldn't have applied for the job if he didn't want to leave. (1.4/0)
- (b) Set up a system for staying in touch, like weekly phone calls or emails. (5.0/.833)
- (c) Think about the great opportunities this change offers. (4.8/.167)
- (d) Don't take the position. (1.2/0)
- 18. A junior employee making routine adjustments to some of Teo's equipment accuses Teo of causing the equipment malfunction. What action would be the most effective for Teo?
- (a) Reprimand the employee for making such accusations. (2.0/0)
- (b) Ignore the accusation, it is not important. (2.6/.500)
- (c) Explain that malfunctions were not his fault. (3.4/.500)
- (d) Learn more about using the equipment so that it doesn't break. (4.8/0)
- 19. Mei Ling answers the phone and hears that close relatives are in hospital critically ill. What action would be the most effective for Mei Ling?
- (a) Let herself cry and express emotion for as long as she feels like. (4.4/.083)
- (b) Speak to other family to calm herself and find out what is happening, then visit the hospital. (5.4/.917)
- (c) There is nothing she can do. (1.4/0)
- (d) Visit the hospital and ask staff about their condition. (4.8/0)
- * 20. The woman who relieves Celia at the end of her shift is twenty minutes late without excuse or apology. What action would be the most effective for Celia?
- (a) Forget about it unless it happens again. (2.2/.167)
- (b) Tell the boss about it. (2.6/.083)
- (c) Ask for an explanation of her lateness. (4.6/.583)
- (d) Tell her that this is unacceptable. (3.6/.167)
- 21. Upon entering full-time study, Vincent cannot afford the time or money he used to spend on water-polo training, which he was quite good at. Although he enjoys full-time study, he misses training. What action would be the most effective for Vincent?
- (a) Concentrate on studying hard, to pass his course. (3.4/0)
- (b) See if there is a local league or a less expensive and less time-consuming sport. (5.0/.667)
- (c) Think deeply about whether sport or study is more important to him. (3.0/.083)
- (d) Find out about sporting scholarships or bursaries. (5.0/.250)
- * 22. Evan's housemate cooked food late at night and left a huge mess in the kitchen that Evan discovered at breakfast. What action would be the most effective for Evan?
- (a) Tell his housemate to clean up the mess. (4.4/.250)
- (b) Ask his housemate that this not happen again. (4.6/.583)

- (c) Clean up the mess himself. (2.0/0)
- (d) Assume that the housemate will clean it later. (3.2/.167)
- 23. Greg has just gone back to university after a lapse of several years. He is surrounded by younger students who seem very confident about their ability and he is unsure whether he can compete with them. What action would be the most effective for Greg?
- (a) Focus on his life outside the university. (2.0/0)
- (b) Study hard and attend all lectures. (4.8/.250)
- (c) Talk to others in his situation. (5.4/.750)
- (d) Realize he is better than the younger students as he has more life experience. (2.8/0)
- * 24. Gloria's housemates never buy essential non-food items when they are running low, relying on Gloria to buy them, which she resents. They know each other reasonably well, but have not yet discussed financial issues. What action would be the most effective for Gloria?
- (a) Don't buy the items. (2.0/0)
- (b) Introduce a new system for grocery shopping and sharing costs. (5.0/.333)
- (c) Tell her housemates she has a problem with this. (4.6/.667)
- (d) Hide her own personal store of items from the others. (2.6/0)
- 25. Shona has not spoken to her nephew for months, whereas when he was younger they were very close. She rings him but he can only talk for five minutes. What action would be the most effective for Shona?
- (a) Realize that he is growing up and might not want to spend so much time with his family any more. (4.2/0)
- (b) Make plans to drop by and visit him in person and have a good chat. (4.0/.250)
- (c) Understand that relationships change, but keep calling him from time to time. (4.8/.750)
- (d) Be upset about it, but realize there is nothing she can do. (1.4/0)
- * 26. Moshe finds out that some members of his social sports team have been saying that he is not a very good player. What action would be the most effective for Moshe?
- (a) Although he may be bad at sport remember he is good at other things. (4.2/.417)
- (b) Forget about it. (3.4/0)
- (c) Do some extra training to try and improve. (4.4/.583)
- (d) Leave that sports team. (1.6/0)
- 27. Joel has always dealt with one particular client but on a very complex job his boss gives the task to a co-worker instead. Joel wonders whether his boss thinks he can't handle the important jobs. What action would be the most effective for Joel?
- (a) Believe he is performing well and will be given the next complex job. (3.4/0)
- (b) Do good work so that he will be given the complex tasks in future. (4.0/.167)
- (c) Ask his boss why the co-worker was given the job. (4.2/.750)
- (d) Not worry about this unless it happens again. (3.2/.083)
- 28. Hasina is overseas when she finds out that her father has passed away from an illness he has had for years. What action would be the most effective for Hasina?
- (a) Contact her close relatives for information and support. (5.6/1.00)

- (b) Try not to think about it, going on with her daily life as best she can. (2.00/0)
- (c) Feel terrible that she left the country at such a time. (1.4/0)
- (d) Think deeply about the more profound meaning of this loss. (4.0/0)
- 29. Mina and her sister-in-law normally get along quite well, and the sister-in-law regularly baby-sits for her for a small fee. Lately she has also been cleaning away cobwebs, commenting on the mess, which Mina finds insulting. What action would be the most effective for Mina?
- (a) Tell her sister-in-law these comments upset her. (4.6/.750)
- (b) Get a new babysitter. (2.0/0)
- (c) Be grateful her house is being cleaned for free. (2.6/.167)
- (d) Tell her only to baby-sit, not to clean. (3.0/.083)
- * 30. Billy is nervous about acting a scene when there are a lot of very experienced actors in the crowd. What action would be the most effective for Billy?
- (a) Put things in perspective it is not the end of the world. (3.4/.250)
- (b) Use some acting techniques to clam his nerves. (4.6/.417)
- (c) Believe in himself and know it will be fine. (3.6/0)
- (d) Practice his scenes more so that he will act well. (5.0/.333)
- 31. Juno is fairly sure his company is going down and his job is under threat. It is a large company and nothing official has been said. What action would be the most effective for Juno?
- (a) Find out what is happening and discuss his concerns with his family. (5.0/.750)
- (b) Try to keep the company afloat by working harder. (2.0/0)
- (c) Start applying for other jobs. (3.8/.250)
- (d) Think of these events as an opportunity for a new start. (4.8/0)
- 32. Mallory moves from a small company to a very large one, where there is little personal contact, which she misses. What action would be the most effective for Mallory?
- (a) Talk to her workmates, try to create social contacts and make friends. (5.2/.917)
- (b) Start looking for a new job so she can leave that environment. (2.2/0)
- (c) Just give it time, and things will be okay. (2.8/0)
- (d) Concentrate on her outside-work friends and colleagues from previous jobs. (3.0/.083)
- 33. A demanding client takes up a lot of Jill's time and then asks to speak to Jill's boss about her performance. Although Jill's boss assures her that her performance is fine, Jill feels upset. What action would be the most effective for Jill?
- (a) Talk to her friends or workmates about it. (3.4/0)
- (b) Ignore the incident and move on to her next task. (2.2/0)
- (c) Calm down by taking deep breaths or going for a short walk. (3.8/.083)
- (d) Think that she has been successful in the past and this client being difficult is not her fault. (4.4/.917)
- 34. Blair and Flynn usually go to a cafe after the working week and chat about what's going on in the company. After Blair's job is moved to a different section in the company, he stops coming to the cafe. Flynn misses these Friday talks. What action would be the most effective for Flynn?

- (a) Go to the cafe or socialize with other workers. (3.8/.167)
- (b) Don't worry about it, ignore the changes and let Blair be. (2.0/0)
- (c) Not talk to Blair again. (1.2/0)
- (d) Invite Blair again, maybe rescheduling for another time. (5.2/.833)
- * 35. Jerry has had several short-term jobs in the same industry, but is excited about starting a job in a different industry. His father casually remarks that he will probably last six months. What action would be the most effective for Jerry?
- (a) Tell his father he is completely wrong. (2.4/0)
- (b) Prove him wrong by working hard to succeed at the new job. (4.0/.417)
- (c) Think of the positives of the new job. (4.6/.083)
- (d) Ignore his father's comments. (3.6/.500)
- 36. Michelle's friend Dara is moving overseas to live with her partner. They have been good friends for many years and Dara is unlikely to come back. What action would be the most effective for Michelle?
- (a) Forget about Dara. (1.6/0)
- (b) Spend time with other friends, keeping herself busy. (3.6/.083)
- (c) Think that Dara and her partner will return soon. (1.6/0)
- (d) Make sure she keeps in contact through email, phone or letter writing. (5.2/.917)
- 37. Dorian needs to have some prostate surgery and is quite scared about the process. He has heard that it is quite painful. *What action would be the most effective for Dorian?*
- (a) Find out as much as he can about the procedure and focus on calming down. (5.4/.333)
- (b) Keep busy in the meantime so he doesn't think about the impending surgery. (3.4/0)
- (c) Talk to his family about his concerns. (4.4/0)
- (d) Talk to his doctor about what will happen. (5.2/.667)
- 38. Hannah's access to essential resources has been delayed and her work is way behind schedule. Her progress report makes no mention of the lack of resources. What action would be the most effective for Hannah?
- (a) Explain the lack of resources to her boss or to management. (5.0/.167)
- (b) Learn that she should plan ahead for next time. (3.4/0)
- (c) Document the lack of resources in her progress report. (5.2/.833)
- (d) Don't worry about it. (1.4/0)
- * 39. Jill is given an official warning for entering a restricted area. She was never informed that the area was restricted and will lose her job if she gets two more warnings, which she thinks is unfair. What action would be the most effective for Jill?
- (a) Think about the unfairness of the situation. (1.6/0)
- (b) Accept the warning and be careful not to go in restricted areas from now on. (3.8/.500)
- (c) Explain that she didn't know it was restricted. (4.8/.500)
- (d) Take a few deep breaths and calm down about it. (3.8/0)
- 40. Alana has been acting in a high-ranking role for several months. A decision is made that only long-term employees can now act in these roles, and Alana has not been with the company long

enough to do so. What action would be the most effective for Alana?

- (a) Quit that position. (2.4/.083)
- (b) Use that experience to get promoted when she is long term. (4.2/.583)
- (c) Accept this new rule, but feel hard-done-by. (1.8/0)
- (d) Ask management if an exception can be made. (4.8/.333)
- * 41. Reece's friend points out that her young children seem to be developing more quickly than Reece's. Reece sees that this is true. What action would be the most effective for Reece?
- (a) Talk the issue over with another friend. (3.6/0)
- (b) Angrily confront her friend about making such statements. (1.8/0)
- (c) Realize that children develop at different rates. (4.4/.250)
- (d) Talk to a doctor about what the normal rates of development are. (5.0/.750)
- * 42. Jumah has been working at a new job part-time while he studies. His shift times for the week are changed at the last minute, without consulting him. What action would be the most effective for Jumah?
- (a) Refuse to work the new shifts. (1.8/0)
- (b) Find out if there is some reasonable explanation for the shift changes. (4.4/.750)
- (c) Tell the manager in charge of shifts that he is not happy about it. (3.8/.250)
- (d) Grumpily accept the changes and do the shifts. (2.2/0)
- 43. Jacob is having a large family gathering to celebrate him moving into his new home. He wants the day to go smoothly and is a little nervous about it. What action would be the most effective for Jacob?
- (a) Talk to friends or relatives to ease his worries. (3.6/.083)
- (b) Try to calm down, perhaps go for a short walk or meditate. (3.8/.083)
- (c) Prepare ahead of time so he has everything he needs available. (5.2/.417)
- (d) Accept that things aren't going to be perfect but the family will understand. (4.4/.417)
- 44. Julie hasn't seen Ka for ages and looks forward to their weekend trip away. However, Ka has changed a lot and Julie finds that she is no longer an interesting companion. *What action would be the most effective for Julie?*
- (a) Cancel the trip and go home. (2.0/0)
- (b) Realize that it is time to give up the friendship and move on. (3.2/0)
- (c) Understand that people change, so move on, but remember the good times. (4.6/.917)
- (d) Concentrate on her other, more rewarding friendships. (4.4/.08)

APPENDIX D. FIVE-FACTOR MODEL IPIP-NEO PERSONALITY INDEX

How Accurately Can You Describe Yourself?

Describe yourself as you generally are now, not as you wish to be in the future.

Verv

Describe yourself as you honestly see yourself, in relation to other people you know of the same sex as you are, and roughly your same age.

So that you can describe yourself in an honest manner, your responses will be kept in absolute confidence.

Indicate for each statement whether it is: 1. Very Inaccurate, 2. Moderately Inaccurate, 3. Neither Accurate Nor Inaccurate, 4. Moderately Accurate, or 5. Very Accurate as a description of you.

Moderately Neither Moderately

Verv

	Inaccurate	Inaccurate	Accurate Nor Inaccurate		Accurate	
1. Am the life of the party.	o	0	o	0	o	(1+)
2. Insult people.	0	0	0	0	0	(2-)
3. Am always prepared.	0	0	0	0	0	(3+)
4. Get stressed out easily.	0	0	0	0	0	(4-)
5. Have a rich vocabulary.	0	0	0	0	0	(5+)
6. Often feel uncomfortable around others.	<i>o</i>	o	o	o	o	(1-)
7. Am interested in people.	0	0	0	0	0	(2+)
8. Leave my belongings around.	0	0	o	0	0	(3-)
9. Am relaxed most of the time.	o	o	0	o	o	(4+)

и	Have difficulty inderstanding abstract deas.	0	0	o	o	0	(5-)
	Feel comfortable around eople.	o	o	o	o	0	(1+)
	Am not interested in the the people's problems.	o	0	0	0	0	(2-)
13. P	Pay attention to details.	0	0	0	0	0	(3+)
14. V	Vorry about things.	0	0	0	0	0	(4-)
	Have a vivid magination.	0	0	o	0	0	(5+)
16. K	Keep in the background.	0	0	0	0	0	(1-)
	Sympathize with others' eelings.	0	0	0	o	0	(2+)
18. N	Take a mess of things.	0	0	0	0	0	(3-)
19. S	Seldom feel blue.	0	0	0	0	0	(4+)
	Am not interested in bstract ideas.	0	0	0	0	0	(5-)
21. S	Start conversations.	0	0	0	0	0	(1+)
	Feel little concern for thers.	0	0	0	0	0	(2-)
	Get chores done right way.	0	0	0	0	0	(3+)
24. A	Am easily disturbed.	0	0	0	0	0	(4-)
25. H	Have excellent ideas.	0	0	0	0	0	(5+)
26. H	Have little to say.	0	0	0	0	0	(1-)
27. H	Have a soft heart.	0	0	0	0	0	(2+)

28. Often forget to put things back in their proper place.	0	o	o	o	0	(3-)
29. Am not easily bothered by things.	0	o	0	0	0	(4+)
30. Do not have a good imagination.	0	o	0	0	o	(5-)
31. Talk to a lot of different people at parties.	o	o	0	0	o	(1+)
32. Am not really interested in others.	o	o	o	o	o	(2-)
33. Like order.	0	0	0	0	0	(3+)
34. Get upset easily.	0	0	0	0	0	(4-)
35. Am quick to understand things.	0	o	0	0	o	(5+)
36. Don't like to draw attention to myself.	0	o	0	0	0	(1-)
37. Take time out for others.	0	0	0	0	0	(2+)
38. Shirk my duties.	0	0	0	0	0	(3-)
39. Rarely get irritated.	0	0	0	0	0	(4+)
40. Try to avoid complex people.	o	o	0	0	o	(5-)
41. Don't mind being the center of attention.	o	o	o	o	0	(1+)
42. Am hard to get to know.	0	0	0	0	0	(2-)
43. Follow a schedule.	0	0	0	0	0	(3+)
44. Change my mood a lot.	0	0	0	0	0	(4-)
45. Use difficult words.	0	0	0	0	0	(5+)

46. Am quiet around strangers.	0	0	0	0	0	(1-)
47. Feel others' emotions.	0	0	0	0	0	(2+)
48. Neglect my duties.	0	0	0	0	0	(3-)
49. Seldom get mad.	0	0	0	0	0	(4+)
50. Have difficulty imagining things.	0	o	0	0	0	(5-)
51. Make friends easily.	0	0	0	0	0	(1+)
52. Am indifferent to the feelings of others.	0	o	0	0	0	(2-)
53. Am exacting in my work.	0	0	0	0	0	(3+)
54. Have frequent mood swings.	0	o	0	0	0	(4-)
55. Spend time reflecting on things.	0	o	0	0	0	(5+)
56. Find it difficult to approach others.	0	o	0	0	0	(1-)
57. Make people feel at ease.	0	0	0	0	0	(2+)
58. Waste my time.	0	0	0	0	0	(3-)
59. Get irritated easily.	0	0	0	0	0	(4-)
60. Avoid difficult reading material.	0	o	0	0	0	(5-)
61. Take charge.	0	0	0	0	0	(1+)
62. Inquire about others' well-being.	0	o	0	0	0	(2+)
63. Do things according to a plan.	0	o	0	0	0	(3+)
64. Often feel blue.	0	0	0	0	0	(4-)

65. Am full of ideas.	0	0	0	0	0	(5+)
66. Don't talk a lot.	0	0	0	0	0	(1-)
67. Know how to comfort others.	o	o	o	o	o	(2+)
68. Do things in a half-way manner.	0	o	0	0	o	(3-)
69. Get angry easily.	0	0	0	0	0	(4-)
70. Will not probe deeply into a subject.	0	o	0	0	0	(5-)
71. Know how to captivate people.	0	o	0	0	0	(1+)
72. Love children.	0	0	0	0	0	(2+)
73. Continue until everything is perfect.	0	o	0	0	0	(3+)
74. Panic easily.	0	0	0	0	0	(4-)
75. Carry the conversation to a higher level.	o	o	0	0	o	(5+)
76. Bottle up my feelings.	0	0	0	0	0	(1-)
77. Am on good terms with nearly everyone.	o	o	0	0	0	(2+)
78. Find it difficult to get down to work.	0	o	0	0	0	(3-)
79. Feel threatened easily.	0	0	0	0	0	(4-)
80. Catch on to things quickly.	o	o	o	o	o	(5+)
81. Feel at ease with people.	0	0	0	0	0	(1+)
82. Have a good word for everyone.	0	0	0	0	0	(2+)

83.	Make plans and stick to them.	0	o	o	0	0	(3+)
<i>84</i> .	Get overwhelmed by emotions.	0	o	0	0	0	(4-)
85.	Can handle a lot of information.	o	o	0	0	0	(5+)
86.	Am a very private person.	0	o	0	0	0	(1-)
<i>87</i> .	Show my gratitude.	0	o	0	0	0	(2+)
88.	Leave a mess in my room.	0	o	0	0	0	(3-)
89.	Take offense easily.	0	o	0	0	0	(4-)
90.	Am good at many things.	0	0	0	0	0	(5+)
91.	Wait for others to lead the way.	0	o	o	0	0	(1-)
92.	Think of others first.	0	0	0	0	0	(2+)
93.	Love order and regularity.	o	0	o	0	o	(3+)
94.	Get caught up in my problems.	o	o	0	0	0	(4-)
95.	Love to read challenging material.	o	o	0	0	o	(5+)
96.	Am skilled in handling social situations.	o	o	o	o	o	(1+)
97.	Love to help others.	0	0	0	0	0	(2+)
98.	Like to tidy up.	0	0	0	0	0	(3+)
99.	Grumble about things.	0	0	0	0	0	(4-)
100.	Love to think up new ways of doing things.	0	o	o	o	0	(5+)

APPENDIX E. NASA TASK LOAD INDEX (TLX)

Figure 8.6

NASA Task Load Index

Hart and Staveland's NASA Task Load Index (TLX) method assesses work load on five 7-point scales. Increments of high, medium and low estimates for each point result in 21 gradations on the scales.

Name	Task		Date
Mental Demand	Hov	v mentally den	nanding was the task?
Very Low			Uery High
Physical Demand	How physica	illy demanding	ı was the task?
Very Low			Very High
Temporal Demand	How hurried	or rushed was	the pace of the task?
Very Low			Very High
	How succes: you were ask		n accomplishing what
Perfect			Failure
		d you have to v performance?	work to accomplish
Very Low			Very High
	How insecur and annoyed		d, irritated, stressed,
Very Low			Very High

APPENDIX F. PANAS-X GENERAL MOOD STATE INDICATOR

This scale consists of a number of words and phrases that describe different feelings and emotions.

Read each item and then mark the appropriate answer in the space next to that word.

Indicate to what extent you have felt this way during the last session.

Use the following scale to record your answers:

1	2	3	4	5
Very slightly or not at all	A little	Moderately	Quite a bit	Extremely
Afraid		Attentive		
Scared	De	etermined		
Nervous	En	thusiastic		
Jittery		Excited		
Irritable		Inspired		
Hostile]	Interested		
Guilty		Proud		
Ashamed		Strong		
Upset		Active		
Distressed		Alert		

Derived from Watson & Clark (1994)

APPENDIX G. SELF-REPORT AFFECT GRID & SLIDER SCALES

"Affect Grid" Russell, Weiss & Mendelsohn, 1989

Indicate your perceived level of Arousal or Excitement

Extremely Low								Extremely High
1	2	3	4	5	6	7	8	9

Indicate your perceived level of Pleasantness

Extreme Unpleasa	v							xtremely Pleasant
1	2	3	4	5	6	7	8	9

APPENDIX H. COGNITIVE TEST EXAMPLES

CRT

Chapter 7 Choice Reaction Time (CRT)

CRT description

CRT is a 2-choice reaction time test which is similar to the Simple Reaction Time test except that stimulus and response uncertainty are introduced by having two possible stimuli and two possible responses.

Display

An arrow-shaped stimulus is displayed on either the left or the right side of the screen.

Figure 7-1 The CRT task screen

Task

The subject must press the left hand button on the press pad if the stimulus is displayed on the left hand side of the screen, and the right hand button on the press pad if the stimulus is displayed on the right hand side of the screen.

There is a practice stage (block 1) of 24 trials and two assessment stages (block 2 and block 3), each of 50 trials.

Test Administration Guide

Choice Reaction Time (CRT)

61

Chapter 18 Stockings of Cambridge (SOC)

SOC description

SOC is a test of spatial planning and spatial working memory, which gives a measure of frontal lobe function.

Display

Figure 18-1 The SOC task screen

The subject is shown two displays containing three coloured balls. The displays are presented in such a way that they can easily be perceived as stacks of coloured balls held in stockings or socks suspended from a beam. This arrangement makes the 3-D concepts involved apparent to the subject, and fits with the verbal instructions.

Task

The subject must use the balls in the lower display to copy the pattern shown in the upper display. The balls may be moved one at a time by touching the required ball,

Test Administration Guide

Stockings of Cambridge (SOC)

157

then touching the position to which it should be moved. The time taken to complete the pattern and the number of moves required are taken as measures of the subject's planning ability.

At first it is only necessary to move one ball, the number being increased in steps to four moves. At this point, a procedure controlling for motor performance is inserted. The upper display moves one ball at a time, repeating the moves made by the subject in the corresponding previous planning phase. The subject must follow the upper display by moving the balls in the lower display. Again, the number of moves increases from 2 to 4. The difference in time taken to complete (but more especially, to initiate) each problem is taken as an index of the additional time taken to plan the solution of the copying, as distinct from the yoked following task.

A second block of planning problems of 2, 4, and 5 moves follows, and the test is completed with a second block of motor control problems. Should the subject make more than double the number of moves necessary for the simplest solution, the problem is terminated. Should the computer terminate three problems in a row, the entire test ends. There is no time limit.

The first problem is for demonstration by the tester. After that, subjects must make all the moves themselves.

SOC test modes

The SOC test has one mode:

clinical

SOC administration script

Problem 1 (example)

With the SOC start screen displayed, press SPACE to begin the test, and say:

I am going to show you how this works. You can see that there are two arrangements...

158

Stockings of Cambridge (SOC)

CANTABeclipseTM

Chapter 10 Intra/Extradimensional Set Shift (IED)

ien des	SCI	iption
Intra/Extrac	lime	nsional Set Shift is a test of rule acquisition and reversal. It features:
		visual discrimination and attentional set formation
		maintenance, shifting and flexibility of attention
This test is p	orima	arily sensitive to changes to the fronto-striatal areas of the brain.
1	_	g/Little Circle (BLC) should always be administered fore this test.

Display

Two artificial dimensions are used in the test: colour-filled shapes

> white lines

Simple stimuli are made up of just one of these dimensions, whereas compound stimuli are made up of both, namely white lines overlying colour-filled shapes.

Subjects progress through the test by satisfying a set criterion of learning at each stage (6 consecutive correct responses). If at any stage the subject fails to reach this criterion after 50 trials, the test terminates.

75

Figure 10-1 The IED test screen for block 1 (left) and block 4(right)

Task

The test starts with Block 1, the presentation of two simple, colour-filled shapes. The subject must learn which of the stimuli is correct by touching it, and continue until the criterion is reached. In Block 2, the contingencies are reversed, so that now the previously incorrect stimulus is correct.

In Block 3, the second dimension is then introduced, initially lying adjacent to, and then, for Block 4, overlapping, the first dimension. The contingencies do not change, remaining the same as at the end of the simple discrimination. Once the criterion has been reached with the overlapping compound stimulus in Block 4, the contingencies are reversed for Block 5, within the original dimension. It is important to note that the second dimension is entirely redundant to the solution of the problem at this stage.

Once the subject has learned the compound discrimination, new compound stimuli are presented (Block 6), still varying along the same 2 dimensions (of shape and of line). Subjects are required to continue to attend to the previously relevant dimension of shape and learn which of the two new exemplars is correct (the 'intradimensional shift').

Once the subject has completed a successful intradimensional shift, followed by a reversal (Block 7), again the compound stimuli are changed. For this stage (Block 8), subjects are required to shift attention to the previously irrelevant dimension and learn which of the two exemplars in this dimension is now correct (the 'extradimensional shift'). In Block 9 the contingencies are again reversed.

APPENDIX I. DEBRIEFING QUESTIONNAIRE

1) Did you notice any attacks, manipulations, or changes in the system while you were operating it?
If so, did you learn to cope with it, and how?
2) Was there any point when you thought you might not be able to finish the game? If so, what made you change your mind?
3) Do you think your performance of the task was affected in any way or at any time by the video clips?
4) Was anything particularly frustrating about the task itself?

APPENDIX J. PERSONALITY & SCORE CORRELATION MATRIX

		Extraversion	Agreeableness	Conscientiousness	Emotional Stability	Intellect/Imagination
Average	Pearson	.030	169	100	264	.010
Score	Correlation	.030	107	100	204	.010
Score	Sig. (2-tailed)	.868	.347	.580	.138	.956
	N	33	33	33	33	33
No Attack	Pearson	.025	147	077	229	.075
Average	Correlation Sig. (2-	.892	.414	.672	.200	.680
	tailed)	33	33	33	33	33
m 1:						
Tracking Attack	Pearson Correlation	004	331	188	287	214
Average	Sig. (2-tailed)	.985	.059	.294	.106	.233
	N	33	33	33	33	33
Fuel Mgt Attack	Pearson Correlation	029	250	.004	194	.049
Average	Sig. (2- tailed)	.871	.161	.983	.279	.787
	N	33	33	33	33	33
Score Display	Pearson Correlation	026	079	044	178	.074
Attack Average	Sig. (2-tailed)	.888	.660	.807	.322	.684
C	N	33	33	33	33	33
Positive Valence	Pearson Correlation	.100	168	069	089	029
Average	Sig. (2-tailed)	.581	.349	.703	.622	.873
	N	33	33	33	33	33
Negative Valence	Pearson Correlation	.058	173	131	070	.005
Average	Sig. (2-tailed)	.750	.336	.466	.700	.976
	N	33	33	33	33	33
Session 1 - No Attack	Pearson Correlation	.111	079	065	244	.107
- 1.0	Sig. (2-tailed)	.537	.662	.719	.172	.555
	N	33	33	33	33	33
Session 1 - Tracking	Pearson Correlation	066	190	181	423*	146
Attack	Sig. (2-	.715	.290	.314	.014	.418
	tailed) N	33	33	33	33	33
Session 1 - Fuel Mgt	Pearson Correlation	.097	141	.073	146	.060
Attack	Sig. (2-tailed)	.590	.433	.686	.419	.739
	N	33	33	33	33	33
Session 1 - Score	Pearson Correlation	012	103	065	253	010
Display	Sig. (2-	.948	.568	.720	.156	.958

Attack	tailed)					
	N	33	33	33	33	33
Session 2 - No Attack	Pearson Correlation	.009	118	128	244	.044
	Sig. (2- tailed)	.960	.512	.477	.171	.810
	N	33	33	33	33	33
Session 2 - Tracking	Pearson Correlation	.067	356*	186	143	253
Attack	Sig. (2- tailed)	.709	.042	.299	.426	.156
	N	33	33	33	33	33
Session 2 - Fuel Mgt	Pearson Correlation	080	219	182	317	.030
Attack	Sig. (2- tailed)	.659	.221	.310	.072	.869
	N	33	33	33	33	33
Session 2 - Score	Pearson Correlation	.022	.018	058	125	.163
Display Attack	Sig. (2- tailed)	.904	.923	.749	.487	.366
	N	33	33	33	33	33
Session 1 - Positive	Pearson Correlation	.086	101	.031	288	036
Valence	Sig. (2-tailed)	.634	.577	.862	.104	.843
	N	33	33	33	33	33
Session 1 - Negative	Pearson Correlation	.012	171	117	241	.079
Valence	Sig. (2-tailed)	.946	.340	.516	.177	.663
	N	33	33	33	33	33
Session 2 - Positive	Pearson Correlation	.020	145	120	233	.027
Valence	Sig. (2- tailed)	.911	.421	.507	.191	.880
	N	33	33	33	33	33
Session 2 - Negative	Pearson Correlation	013	229	188	225	037
Valence	Sig. (2- tailed)	.942	.201	.295	.208	.838
	N	33	33	33	33	33

APPENDIX K. EMOTIONAL REGULATION ABILITY & SCORE CORRELATION MATRIX

		ERA - MER	ERA - PEC
		weighted	weighted
Average Score	Pearson	243	202
	Correlation Sig. (2-tailed)	.174	.260
	N	33	33
No Attack Average	Pearson	219	190
NO Attack Average	Correlation	219	190
	Sig. (2-tailed)	.220	.290
	N	33	33
Tracking Attack Average	Pearson	100	064
	Correlation		
	Sig. (2-tailed)	.579	.724
	N	33	33
Fuel Mgt Attack Average	Pearson Correlation	314	257
	Sig. (2-tailed)	.076	.149
	N	33	33
Score Display Attack Average	Pearson	187	196
1 3	Correlation		
	Sig. (2-tailed)	.298	.275
	N	33	33
Positive Valence Average	Pearson	196	188
	Correlation Sig. (2-tailed)	.274	.295
	N	33	33
Negative Valence Average	Pearson	052	056
riogative varence riverage	Correlation	.032	.030
	Sig. (2-tailed)	.774	.758
	N	33	33
Session 1 - No Attack	Pearson	199	155
	Correlation	267	200
	Sig. (2-tailed)	.267	.390
Carrier 1 Translate A 44-1	N Pearson	021	33
Session 1 - Tracking Attack	Correlation	021	003
	Sig. (2-tailed)	.906	.987
	N	33	33
Session 1 - Fuel Mgt Attack	Pearson	293	222
	Correlation	000	21.5
	Sig. (2-tailed)	.098	.215
	N	33	33
Session 1 - Score Display Attack	Pearson Correlation	179	199
	Sig. (2-tailed)	.318	.266
	N	33	33
Session 2 - No Attack	Pearson	206	180
	Correlation		
	Sig. (2-tailed)	.249	.316

	N	33	33
Session 2 - Tracking Attack	Pearson	235	180
	Correlation		
	Sig. (2-tailed)	.187	.317
	N	33	33
Session 2 - Fuel Mgt Attack	Pearson	274	223
	Correlation		
	Sig. (2-tailed)	.122	.211
	N	33	33
Session 2 - Score Display Attack	Pearson	181	165
	Correlation		
	Sig. (2-tailed)	.313	.358
	N	33	33
Session 1 - Positive Valence	Pearson	273	250
	Correlation		
	Sig. (2-tailed)	.125	.160
	N	33	33
Session 1 - Negative Valence	Pearson	149	098
	Correlation		
	Sig. (2-tailed)	.409	.586
	N	33	33
Session 2 - Positive Valence	Pearson	288	239
	Correlation		
	Sig. (2-tailed)	.104	.180
	N	33	33
Session 2 - Negative Valence	Pearson	200	168
	Correlation		
	Sig. (2-tailed)	.265	.350
	N	33	33

APPENDIX L. COGNITIVE TESTING IED & SCORE CORRELATION MATRIX

		IED - Stages	IED - total	IED - total errors
Average Score	Pearson	completed .341*	errors 202	adjusted295
Average Score	Correlation	.541	202	27.
	Sig. (2-tailed)	.049	.252	.09
	N	34	34	34
No Attack	Pearson	.339	223	30
Average	Correlation			
	Sig. (2-tailed)	.050	.205	.08
	N	34	34	3.
Tracking Attack	Pearson	.189	.003	11
Average	Correlation			
	Sig. (2-tailed)	.284	.988	.53
	N	34	34	3-
Fuel Mgt Attack	Pearson	.297	241	28
Average	Correlation	000	170	10
	Sig. (2-tailed)	.088	.170	.10
	N	34	34	3-
Score Display	Pearson	.343*	173	28
Attack Average	Correlation Sig. (2-tailed)	.047	.327	.10
	N	34	34	3.10
Positive Valence	Pearson			
Average	Correlation	.038	.089	.03
Tiverage	Sig. (2-tailed)	.830	.615	.85
	N	34	34	3
Negative	Pearson	.031	.026	00
Valence	Correlation	.031	.020	.00
Average	Sig. (2-tailed)	.861	.884	.99
	N	34	34	3
Session 1 - No	Pearson	.290	238	28
Attack	Correlation			
	Sig. (2-tailed)	.096	.175	.10
	N	34	34	3.
Session 1 -	Pearson	.022	.105	.04
Tracking Attack	Correlation	001		00
	Sig. (2-tailed)	.901	.555	.80
	N	34	34	3
Session 1 - Fuel	Pearson Correlation	.341*	280	33
Mgt Attack	Sig. (2-tailed)	.049	.109	.05
	N	34	34	3.03
Sassian 1				
Session 1 - Score Display	Pearson Correlation	.344*	248	32
Attack	Sig. (2-tailed)	.046	.158	.06
	N	34	34	3.
Session 2 - No	Pearson	.381*	224	33
Attack	Correlation	.301	.224	55.
	Sig. (2-tailed)	.026	.202	.05
	N	34	34	3.
Session 2 -	Pearson	.307	062	20
Tracking Attack	Correlation			

	Sig. (2-tailed)	.078	.727	.239
	N	34	34	34
Session 2 - Fuel	Pearson	.219	195	217
Mgt Attack	Correlation			
	Sig. (2-tailed)	.212	.269	.219
	N	34	34	34
Session 2 -	Pearson	.333	106	243
Score Display	Correlation			
Attack	Sig. (2-tailed)	.054	.550	.166
	N	34	34	34
Session 1 -	Pearson	.318	231	296
Positive Valence	Correlation			
	Sig. (2-tailed)	.067	.189	.090
	N	34	34	34
Session 1 -	Pearson	.272	187	249
Negative	Correlation			
Valence	Sig. (2-tailed)	.119	.288	.156
	N	34	34	34
Session 2 -	Pearson	.334	104	236
Positive Valence	Correlation			
	Sig. (2-tailed)	.054	.558	.179
	N	34	34	34
Session 2 -	Pearson	.353*	231	324
Negative	Correlation			
Valence	Sig. (2-tailed)	.040	.188	.062
	N	34	34	34

APPENDIX M. COGNITIVE TESTING SOC & SCORE CORRELATION MATRIX

		SOC - mean	SOC - mean	SOC - problems
		initial thinking	subsequent	solved in min
		time	thinking time	moves
Average Score	Pearson	.266	151	.180
	Correlation Sig. (2-tailed)	.129	.393	.309
	N	34	34	34
N. A., 1 A				
No Attack Average	Pearson Correlation	.248	141	.199
	Sig. (2-tailed)	.157	.426	.260
	N	34	34	34
Tracking Attack	Pearson	.254	068	.192
Average	Correlation			
	Sig. (2-tailed)	.148	.701	.277
	N	34	34	34
Fuel Mgt Attack	Pearson	.191	082	.054
Average	Correlation	290	616	762
	Sig. (2-tailed)	.280	.646	.762
G D' 1 Av 1	N	34	34	34
Score Display Attack Average	Pearson Correlation	.299	180	.209
Average	Sig. (2-tailed)	.086	.309	.234
	N	34	34	34
Positive Valence	Pearson	.347*	.079	.116
Average	Correlation		1017	
	Sig. (2-tailed)	.044	.658	.512
	N	34	34	34
Negative Valence	Pearson	.316	.016	.224
Average	Correlation	0.60	020	204
	Sig. (2-tailed)	.068	.928	.204
	N	34	34	34
Session 1 - No Attack	Pearson Correlation	.194	152	.126
	Sig. (2-tailed)	.272	.391	.477
	N	34	34	34
Session 1 - Tracking	Pearson	.276	179	.248
Attack	Correlation	.270	1277	.2.0
	Sig. (2-tailed)	.114	.311	.158
	N	34	34	34
Session 1 - Fuel Mgt	Pearson	.167	076	045
Attack	Correlation	246	660	700
	Sig. (2-tailed)	.346	.669	.799
0 1 0	N	34	34	34
Session 1 - Score Display Attack	Pearson Correlation	.245	208	.237
Display Titack	Sig. (2-tailed)	.163	.238	.176
	N	34	34	34
Session 2 - No Attack	Pearson	.258	154	.262
110 1101	Correlation	.230		.202
	Sig. (2-tailed)	.141	.386	.135
	N	34	34	34

Session 2 - Tracking Attack	Pearson Correlation	.228	.019	.128
Tituen	Sig. (2-tailed)	.195	.914	.470
	N	34	34	34
Session 2 - Fuel Mgt Attack	Pearson Correlation	.161	136	.197
	Sig. (2-tailed)	.363	.442	.263
	N	34	34	34
Session 2 - Score Display Attack	Pearson Correlation	.320	163	.169
	Sig. (2-tailed)	.065	.358	.340
	N	34	34	34
Session 1 - Positive Valence	Pearson Correlation	.185	093	028
	Sig. (2-tailed)	.296	.600	.875
	N	34	34	34
Session 1 - Negative Valence	Pearson Correlation	.280	227	.295
	Sig. (2-tailed)	.109	.196	.090
	N	34	34	34
Session 2 - Positive Valence	Pearson Correlation	.318	177	.254
	Sig. (2-tailed)	.067	.315	.148
	N	34	34	34
Session 2 - Negative Valence	Pearson Correlation	.213	064	.166
	Sig. (2-tailed)	.227	.719	.348
	N	34	34	34

APPENDIX N. COGNITIVE TESTING CRT & SCORE CORRELATION MATRIX

		CRT - mean	CRT - max	CRT - percent
		correct latency	correct latency	correct trials
Average Score	Pearson	368 [*]	234	225
	Correlation Sig. (2-tailed)	.032	192	200
	N (2-tailed)	34	.183 34	.200
NT. A441				
No Attack Average	Pearson Correlation	322	147	134
Average	Sig. (2-tailed)	.063	.406	.449
	N	34	34	34
Tracking Attack	Pearson	288	377*	316
Average	Correlation			
C	Sig. (2-tailed)	.099	.028	.069
	N	34	34	34
Fuel Mgt Attack	Pearson	286	130	252
Average	Correlation			
	Sig. (2-tailed)	.101	.462	.151
	N	34	34	34
Score Display	Pearson	449**	248	192
Attack Average	Correlation	.008	150	.277
	Sig. (2-tailed)		.158	
Positive	N	290	279	192
Valence	Pearson Correlation	290	219	192
Average	Sig. (2-tailed)	.097	.109	.277
11, etage	N	34	34	34
Negative	Pearson	281	287	156
Valence	Correlation			
Average	Sig. (2-tailed)	.108	.100	.377
	N	34	34	34
Session 1 - No	Pearson	293	061	104
Attack	Correlation	002	722	557
	Sig. (2-tailed)	.093	.732	.557
Session 1 -	N Page 1997	34	34	34
Tracking Attack	Pearson Correlation	296	292	237
Trucking Tittack	Sig. (2-tailed)	.090	.094	.177
	N	34	34	34
Session 1 - Fuel	Pearson	174	.031	207
Mgt Attack	Correlation			
	Sig. (2-tailed)	.324	.860	.241
	N	34	34	34
Session 1 -	Pearson	340 [*]	218	188
Score Display	Correlation	0.40	21.5	200
Attack	Sig. (2-tailed)	.049	.216	.286
gi. 2 N	N	34	34	34
Session 2 - No Attack	Pearson Correlation	314	227	135
Auack	Sig. (2-tailed)	.070	.197	.445
	5. (2 milea)	ı .570	1,	I3

	N	34	34	34
Session 2 -	Pearson	238	366 [*]	280
Tracking Attack	Correlation			
	Sig. (2-tailed)	.175	.033	.109
	N	34	34	34
Session 2 - Fuel	Pearson	377*	332	230
Mgt Attack	Correlation			
	Sig. (2-tailed)	.028	.055	.191
	N	34	34	34
Session 2 -	Pearson	522**	259	164
Score Display	Correlation			
Attack	Sig. (2-tailed)	.002	.139	.355
	N	34	34	34
Session 1 -	Pearson	305	092	239
Positive	Correlation			
Valence	Sig. (2-tailed)	.080	.605	.173
	N	34	34	34
Session 1 -	Pearson	273	149	156
Negative	Correlation			
Valence	Sig. (2-tailed)	.118	.399	.379
	N	34	34	34
Session 2 -	Pearson	417 [*]	384 [*]	226
Positive	Correlation			
Valence	Sig. (2-tailed)	.014	.025	.199
	N	34	34	34
Session 2 -	Pearson	391 [*]	269	221
Negative	Correlation			
Valence	Sig. (2-tailed)	.022	.125	.208
	N	34	34	34

APPENDIX O. RESULTS OF STASTICAL ANALYSES

Stat results

Statistix 10.0			2/25/2014, 11:37:34	AM						
Repeated Measures AOV Tab	le for REL_SCOR	RE								
Source	DF	ss	MS		F P					
subject_n (A) Attack_Ty (B)	29 3	1.188E+10 6.191E+10	4.095E+08 2.064E+10	72.6	8 0.0000					
Error A*B	87	2.470E+10	2.839E+08							
Valence_S (C) Error A*C	1 29	2.461E+08 5.905E+09	2.461E+08 2.036E+08	1.2	0.2806					
Session (D)	1	4.912E+09	4.912E+09	18.8	2 0.0002					
Error A*D B*C	29 3	7.570E+09 9.047E+07	2.610E+08 3.016E+07	0.1	5 0.9280					
Error A*B*C	87	1.723E+10	1.981E+08							
B*D Error A*B*D	3 87	4.267E+08 2.412E+10	1.422E+08 2.772E+08	0.5	0.6743					
C*D	1	9.832E+08	9.832E+08	4.0	5 0.0537					
Error A*C*D	29	7.048E+09	2.430E+08							
B*C*D Error A*B*C*D	3 87	1.158E+09 1.147E+10	3.861E+08 1.318E+08	2.9	3 0.0381					
Total	479	1.796E+11	1.310E+U0							
Grand Mean CV(subject_n*Attack_Ty)				-7869.0 -214.14						
CV(subject_n*Valence_S)				-181.33						
CV(subject_n*Session) CV(subject_n*Attack_Ty*Va	1 0)			-205.33 -178.85						
CV(subject_n-Attack_ly-va CV(subject n*Attack Ty*Se				-211.59						
CV(subject_n*Valence_S*Se	ssion)			-198.11						
CV(subject_n*Attack_Ty*Va	lence_S*Session	1)		-145.92						
Greenhouse-Geisser Correc	ted P-Values fo	or Nonsphericity			Greenhouse	Huynh				
				Minimum	Geisser	Feldt				
Source			F	Epsilon P	Epsilon P	Epsilon P				
Attack_Ty			72.68	0.0000	0.0000	0.0000				
Attack_Ty*Valence_S Attack Ty*Session			0.15 0.51	0.6992 0.4795	0.9047 0.6066	0.9203 0.6200				
Attack_Ty*Valence_S*Sessi	on		2.93	0.0977	M	0.0200 M				
Sphericity Assumption Tes	te									
sphericity Assumption les					Greenhouse	Huynh				
Source				Minimum Epsilon	Geisser Epsilon	Feldt Epsilon	Mauchly's Statistic	Chi Sq	DF	P
subject_n*Attack_Ty				0.3333	0.7046	0.7614	0.35974	28.34	5	0.0000
subject_n*Attack_Ty*Valen				0.3333	0.8574	0.9480	0.77402	7.10	5	0.2132
subject_n*Attack_Ty*Sessi subject_n*Attack_Ty*Valen				0.3333	0.6867 M	0.7400 M	0.52817 M	17.70 M	5 5	0.0034 M
subject_n-Actack_ly-valen	ce_s session			0.3333	Pl	rı	Pl	PI.	5	11
///////////////////////////////////////	///////////////////////////////////////	//								
Statistix 10.0			2/25/2014, 4:23:52	PM						
Repeated Measures AOV Tab	le for PTT_1									
Source	DF	ss	MS	F	P					
subject_n (A) Attack Ty (B)	29 3	756620 19653	26090.3 6550.8	2.29	0.0837					
Error A*B	87	248627	2857.8							
Valence_S (C) Error A*C	1 29	1290 87665	1290.4 3022.9	0.43	0.5187					
Session (D)	1	142	141.9	0.03	0.8722					

Error A*D 29 B*C 3 Error A*B*C 87 B*D 3 Error A*B*D 1 Error A*C*D 29 B*C*D 29 Error A*C*D 3 Error A*C*D 87 Total 479 Grand Mean	156249 18628 241688 6770 185087 4922 92403 7120 306973 2133837	5387.9 6209.5 2778.0 2256.8 2127.4 4921.6 3186.3 2373.2 3528.4	2.24 1.06 1.54 0.67	0.0898 0.3700 0.2239 0.5711					
CV(subject_n*Attack_Ty) CV(subject_n*Valence_S) CV(subject_n*Session) CV(subject_n*Attack_Ty*Valence_S) CV(subject_n*Attack_Ty*Session) CV(subject_n*Attack_Ty*Session) CV(subject_n*Attack_Ty*Valence_S*Session) CV(subject_n*Attack_Ty*Valence_S*Session)			12.36 12.72 16.98 12.19 10.67 13.06						
Greenhouse-Geisser Corrected P-Values	s for Nonsphericity			Greenhouse	Huynh				
Source Attack_Ty Attack_Ty*Valence_S Attack_Ty*Session Attack_Ty*Valence_S*Session		F 2.29 2.24 1.06 0.67	Minimum Epsilon P 0.1408 0.1457 0.3115 0.4188	Geisser Epsilon P 0.0931 0.1093 0.3673	Feldt Epsilon P 0.0861 0.1039 0.3700 M				
Sphericity Assumption Tests Source subject_n*Attack_Ty subject_n*Attack_Ty*Valence_S subject_n*Attack_Ty*Session subject_n*Attack_Ty*Valence_S*Session	1		Minimum Epsilon 0.3333 0.3333 0.3333 0.3333	Greenhouse Geisser Epsilon 0.8717 0.7463 0.9307	Huynh Feldt Epsilon 0.9659 0.8118 1.0000	Mauchly's Statistic 0.77938 0.61395 0.89144 M	Chi Sq 6.91 13.52 3.19 M	DF 5 5 5 5	P 0.2274 0.0189 0.6714 M
Repeated Measures AOV Table for PTT_2	2								
Source DF	ss 788311 3485 246193 1138 101952 11 163916 18218 281273 5634 215601 13388 101044 21216 215037 2176418	MS 27183.1 1161.7 2829.8 1137.8 3515.6 11.1 5652.3 6072.6 3233.0 1878.1 2478.2 13388.0 3484.3 7072.1	0.41 0.32 0.00 1.88 0.76 3.84 2.86	P 0.7458 0.5738 0.9650 0.1392 0.5208 0.0596					
Grand Mean CV(subject_n*Attack_Ty) CV(subject_n*Valence_S) CV(subject_n*Session) CV(subject_n*Attack_Ty*Valence_S) CV(subject_n*Attack_Ty*Session) CV(subject_n*Valence_S*Session) CV(subject_n*Valence_S*Session) CV(subject_n*Valence_S*Session)	sion)		432.81 12.29 13.70 17.37 13.14 11.50 13.64						
Greenhouse-Geisser Corrected P-Values	s for Nonsphericity			Greenhouse	Huynh				
Source Attack_Ty Attack_Ty*Valence_S Attack_Ty*Session Attack_Ty*Valence_S*Session		F 0.41 1.88 0.76 2.86	Minimum Epsilon P 0.5267 0.1810 0.3911 0.1015	Geisser Epsilon P 0.6916 0.1513 0.5054	Feldt Epsilon p 0.7088 0.1457 0.5175 M				
Sphericity Assumption Tests				Greenhouse	Huynh				
Source			Minimum Epsilon	Geisser Epsilon	Feldt Epsilon	Mauchly's Statistic	Chi Sq	DF	Р

subject_n*Attack_Ty subject_n*Attack_Ty*Valence subject_n*Attack_Ty*Session subject_n*Attack_Ty*Valence	1			0.3333 0.3333 0.3333 0.3333	0.7603 0.8202 0.8772 M	0.8288 0.9021 0.9727 M	0.55109 0.68071 0.76720 M	16.52 10.66 7.35 M	5 5 5 5	0.0055 0.0585 0.1961 M
Repeated Measures AOV Table	for PTT_3									
Source	DF	ss	MS	F	P					
subject_n (A) Attack_Ty (B)	29 3	908675 27107	31333.6 9035.8	1.18	0.3236					
Error A*B Valence_S (C)	87 1	668404 3991	7682.8 3990.5	0.47	0.4975					
Error A*C Session (D)	29 1	245176 18130	8454.4 18130.2	2.30	0.1401					
Error A*D B*C	29 3	228527 14056	7880.2 4685.4	0.45	0.7175					
Error A*B*C B*D	87 3	904660 14429	10398.4 4809.8	0.64	0.5943					
Error A*B*D C*D	87 1	658780 5122	7572.2 5122.1	1.19	0.2843					
Error A*C*D	29	124814	4303.9							
B*C*D Error A*B*C*D	3 87	22364 689053	7454.6 7920.1	0.94	0.4244					
Total	479	4533289								
Grand Mean CV(subject_n*Attack_Ty) CV(subject_n*Valence_S) CV(subject_n*Session) CV(subject_n*Attack_Ty*Vale CV(subject_n*Attack_Ty*Sess				422.55 20.74 21.76 21.01 24.13 20.59						
CV(subject_n*Valence_S*Sess CV(subject_n*Attack_Ty*Vale	sion)	n)		15.53 21.06						
Greenhouse-Geisser Correcte				21.00						
Greenhouse-Gersser Correcte	a r-varues i	or wonspirericity		Minimum	Greenhouse Geisser	Huynh Feldt				
			F	Epsilon	Epsilon	Epsilon				
Source Attack_Ty			1.18	0.2871	P 0.3041	0.3056				
Attack_Ty*Valence_S Attack_Ty*Session			0.45	0.5074 0.4319	0.5886 0.4978	0.5970 0.5046				
Attack_Ty*Valence_S*Session			0.94	0.3400	М	М				
Sphericity Assumption Tests	ı				Greenhouse	Huynh				
Source				Minimum Epsilon	Geisser Epsilon	Feldt Epsilon	Mauchly's Statistic	Chi Sq	DF	P
subject_n*Attack_Ty subject_n*Attack_Ty*Valence	_S			0.3333	0.4760 0.5118	0.4937 0.5347	0.15858 0.20465	51.05 43.98	5 5	0.0000
subject_n*Attack_Ty*Session subject_n*Attack_Ty*Valence	1			0.3333	0.5235 M	0.5483 M	0.14297 M	53.92 M	5 5	0.0000 M
Repeated Measures AOV Table										
Source	DF	ss	MS	F	P					
subject_n (A) Attack_Ty (B)	29	752820 883	25959.3 294.4	0.14	0.9380					
Error A*B Valence_S (C)	87 1	187762 23	2158.2 22.5	0.01	0.9418					
Error A*C Session (D)	29 1	120625 85	4159.5 85.0	0.02	0.9004					
Error A*D	29	154586	5330.6							
B*C Error A*B*C	3 87	246 178032	82.0 2046.3	0.04	0.9892					
B*D Error A*B*D	3 87	10288 174089	3429.3 2001.0	1.71	0.1701					
C*D Error A*C*D	1 29	90 110623	90.1 3814.6	0.02	0.8789					
B*C*D Error A*B*C*D	3 87	11287 173475	3762.4 1994.0	1.89	0.1377					
Total	479	1874915								
Grand Mean CV(subject_n*Attack_Ty) CV(subject_n*Valence_S) CV(subject_n*Session) CV(subject_n*Attack_Ty*Vale CV(subject_n*Attack_Ty*Sess CV(subject_n*Attack_Ty*Sess CV(subject_n*Valenc_S*Sess CV(subject_n*Valenc_S*Yalenc_S*CV(subject_n*Xalenc_S*Yalenc_S*Xa	sion) sion)	n)		416.25 11.16 15.49 17.54 10.87 10.75 14.84						

Greenhouse-Geisser Correc	cted P-Values fo	or Nonsphericity			Greenhouse	Huynh				
				Minimum Epsilon	Geisser Epsilon	Feldt Epsilon				
Source Attack_Ty			F 0.14	P 0.7146	P 0.8948	P 0.9090				
Attack_Ty*Valence_S			0.04 1.71	0.8427 0.2008	0.9760 0.1791	0.9821 0.1740				
Attack_Ty*Session Attack_Ty*Valence_S*Sessi	ion		1.89	0.1801	M M	M M				
Sphericity Assumption Tes	sts									
				Minimum	Greenhouse Geisser	Huynh Feldt	Mauchly's			
Source subject n*Attack Ty				Epsilon 0.3333	Epsilon 0.7522	Epsilon 0.8189	Statistic 0.61299	Chi Sq 13.57	DF 5	P 0.0186
subject_n*Attack_Ty*Valen	nce_S			0.3333	0.7918 0.8450	0.8672 0.9327	0.61844 0.75051	13.32 7.96	5	0.0205 0.1586
subject_n*Attack_Ty*Sessi subject_n*Attack_Ty*Valen				0.3333	M	0.9327 M	0.75051 M	7.50 M	5	0.1380 M
		\\\\\\								
Statistix 10.0			2/25/2014, 4:25	:17 PM						
Repeated Measures AOV Tab	_									
Source subject_n (A)	DF 29	ss 63493.5	MS 2189.43	F	P					
Attack_Ty (B) Error A*B	3 87	38.0 3310.1	12.66 38.05	0.33	0.8016					
Valence_S (C)	1	141.7	141.71	3.36	0.0772					
Error A*C Session (D)	29 1	1224.4 16.2	42.22 16.17	0.29	0.5969					
Error A*D B*C	29 3	1640.4 19.1	56.56 6.38	0.16	0.9254					
Error A*B*C B*D	87 3	3551.3 27.4	40.82 9.12	0.20	0.8985					
Error A*B*D C*D	87 1	4036.8 33.5	46.40 33.49	0.56	0.4610					
Error A*C*D	29	1739.9	60.00							
B*C*D Error A*B*C*D	3 87	276.5 3347.3	92.18 38.47	2.40	0.0737					
Total	479	82896.1								
Grand Mean CV(subject_n*Attack_Ty)				71.357 8.64						
CV(subject_n*Valence_S)				9.11 10.54						
CV(subject_n*Session) CV(subject_n*Attack_Ty*Va				8.95						
CV(subject_n*Attack_Ty*Se CV(subject_n*Valence_S*Se				9.55 10.85						
CV(subject_n*Attack_Ty*Va				8.69						
Greenhouse-Geisser Correc	cted P-Values fo	or Nonsphericity			Greenhouse	Huynh				
				Minimum Epsilon	Geisser Epsilon	Feldt Epsilon				
Source Attack_Ty			F 0.33	P 0.5685	P 0.7926	P 0.8016				
Attack_Ty*Valence_S			0.16 0.20	0.6955 0.6608	0.8889 0.8711	0.9044 0.8888				
Attack_Ty*Session Attack_Ty*Valence_S*Sessi	ion		2.40	0.1325	M	0.0000 M				
Sphericity Assumption Tes	sts				Greenhouse	Huynh				
				Minimum Epsilon	Geisser Epsilon	Feldt Epsilon	Mauchly's Statistic		DF	
Source subject_n*Attack_Ty				0.3333	0.9552	1.0000	0.93030	Chi Sq 2.00	5	0.8488
subject_n*Attack_Ty*Valen subject_n*Attack_Ty*Sessi	ion			0.3333 0.3333	0.7956 0.8541	0.8718 0.9440	0.61819 0.77034	13.33 7.23	5 5	0.0204
subject_n*Attack_Ty*Valen	nce_S*Session			0.3333	М	М	М	М	5	М
Repeated Measures AOV Tab										
Source subject_n (A)	DF 29	ss 65134.1	MS 2246.00	F	P					
Attack_Ty (B) Error A*B	3 87	458.5 2981.2	152.84 34.27	4.46	0.0058					
Valence_S (C)	1	62.9	62.89	1.68	0.2051					

Error A*C Session (D) Error A*D B*C Error A*B*C B*Por A*B*C C*D Error A*C*D B*C*D Error A*C*D Total Grand Mean	29 1 29 3 87 3 87 1 29 3 87 479	1085.4 67.2 2349.0 92.9 3144.4 35.1 2754.8 3.7 1843.3 244.5 2651.8 82908.8	37.43 67.19 81.00 30.96 36.14 11.70 31.66 3.67 63.56 81.48 30.48	0.83 0.86 0.37 0.06 2.67	0.3699 0.4669 0.7752 0.8118 0.0523					
CV(subject_n*Attack_Ty) CV(subject_n*Valence_S) CV(subject_n*Session) CV(subject_n*Attack_Ty*Valenc CV(subject_n*Attack_Ty*Sessic CV(subject_n*Valence_S*Sessic CV(subject_n*Attack_Ty*Valenc	on) on) :e_S*Session			8.32 8.69 12.79 8.54 8.00 11.33 7.85						
Greenhouse-Geisser Corrected Source Attack_Ty Attack_Ty*Valence_S Attack_Ty*Session	P-values i	or Nonsphericity	F 4.46 0.86 0.37	Minimum Epsilon P 0.0434 0.3624 0.5480	Greenhouse Geisser Epsilon P 0.0112 0.4420 0.7433	Huynh Feldt Epsilon P 0.0090 0.4499 0.7634				
Attack_Ty*Valence_S*Session Sphericity Assumption Tests Source subject_n*Attack_Ty subject_n*Attack_Ty*Valence_S subject_n*Attack_Ty*Session subject_n*Attack_Ty*Valence_S			2.67	Minimum Epsilon 0.3333 0.3333 0.3333 0.3333	M Greenhouse Geisser Epsilon 0.7802 0.7597 0.8526 M	M Huynh Feldt Epsilon 0.8530 0.8279 0.9421 M	Mauchly's Statistic 0.64042 0.58238 0.73612 M	Chi Sq 12.35 14.99 8.49 M	DF 5 5 5 5	P 0.0302 0.0104 0.1311 M
Repeated Measures AOV Table f Source subject_n (A) Attack_Ty (B) Error A*B Valence_S (C) Error A*C Session (D) Error A*D B*C Error A*B B*C Error A*B*C B*D Error A*B*C B*D Error A*C*D Error A*C*D Error A*C*D Error A*B*C*D Total	DF 29 3 87 1 29 3 87 1 29 3 87 1 29 3 87 479	\$\$ 72282.5 82.5 3136.9 70.4 385.4 166.3 2684.9 180.3 3381.2 19.6 2133.5 3.3 1214.7 80.7 2601.1	MS 2492.50 27.51 36.06 70.35 13.29 166.26 92.58 60.10 38.86 6.52 24.52 3.31 41.88 26.90 29.90	0.76 5.29 1.80 1.55 0.27 0.08	0.5179 0.0288 0.1906 0.2083 0.8498 0.7807					
Grand Mean CV(subject_n*Attack_Ty) CV(subject_n*Valence_S) CV(subject_n*Attack_Ty*Valenc CV(subject_n*Attack_Ty*Valenc CV(subject_n*Attack_Ty*Sessic CV(subject_n*Attack_Ty*Sessic CV(subject_n*Attack_Ty*Valenc	on) on)	n)		77.224 7.78 4.72 12.46 8.07 6.41 8.38 7.08						
Greenhouse-Geisser Corrected Source Attack_Ty Attack_Ty*Valence_S Attack_Ty*Session Attack_Ty*Valence_S*Session	P-Values fo	or Nonsphericity	F 0.76 1.55 0.27 0.90	Minimum Epsilon P 0.3896 0.2236 0.6100 0.3507	Greenhouse Geisser Epsilon P 0.4804 0.2190 0.7938	Huynh Feldt Epsilon P 0.4897 0.2164 0.8114				
Sphericity Assumption Tests										

Source subject_n*Attack_Ty subject_n*Attack_Ty*Valenc subject_n*Attack_Ty*Sessic subject_n*Attack_Ty*Valenc	n			Minimum Epsilon 0.3333 0.3333 0.3333	Geisser Epsilon 0.7231 0.7437 0.7545 M	Feldt Epsilon 0.7836 0.8085 0.8217 M	Mauchly's Statistic 0.58913 0.56069 0.59765 M	Chi Sq 14.67 16.04 14.27 M	DF 5 5 5 5	P 0.0119 0.0067 0.0140 M
Repeated Measures AOV Tabl	e for HR_4									
Source subject_n (A) Attack_Ty (B) Error A*B	DF 29 3 87	ss 80799.6 44.9 3001.1	MS 2786.19 14.96 34.50	F 0.43	P 0.7295					
Valence_S (C) Error A*C Session (D)	1 29 1	58.7 327.9 257.7	58.74 11.31 257.67	5.19 2.85	0.0302					
Error A*D B*C	29 3	2625.2 75.2	90.52 25.06	0.72	0.5406					
Error A*B*C B*D Error A*B*D	87 3 87	3012.3 41.8 2396.5	34.62 13.93 27.55	0.51	0.6793					
C*D Error A*C*D	1 29	3.7 981.0	3.67 33.83	0.11	0.7441					
B*C*D Error A*B*C*D Total	3 87 479	47.8 2854.3 96527.6	15.92 32.81	0.49	0.6934					
Grand Mean CV(subject_n*Attack_Ty) CV(subject_n*Valence_S) CV(subject_n*Session) CV(subject_n*Attack_Ty*Val CV(subject_n*Attack_Ty*Ses CV(subject_n*Attack_Ty*Ses CV(subject_n*Attack_Ty*Val	ssion) ssion)	n)		78.570 7.48 4.28 12.11 7.49 6.68 7.40						
Source Attack_Ty*Valence_S Attack_Ty*Valence_S Attack_Ty*Valence_S*Session Attack_Ty*Valence_S*Session		or Nonsphericity	F 0.43 0.72 0.51 0.49	Minimum Epsilon P 0.5154 0.4019 0.4827 0.4916	Greenhouse Geisser Epsilon P 0.6512 0.5215 0.6340 M	Huynh Feldt Epsilon P 0.6654 0.5343 0.6502 M				
Sphericity Assumption Test	s				Greenhouse	Huynh				
Source subject_n*Attack_Ty subject_n*Attack_Ty*Valenc subject_n*Attack_Ty*Sessio subject_n*Attack_Ty*Valence	on			Minimum Epsilon 0.3333 0.3333 0.3333 0.3333	Geisser Epsilon 0.6698 0.8606 0.7795	Feldt Epsilon 0.7198 0.9520 0.8521	Mauchly's Statistic 0.41161 0.74984 0.62759	Chi Sq 24.61 7.98 12.91 M	DF 5 5 5 5	0.0002 0.1573 0.0242 M

|--|--|

Statistix 10.0	2/25/2014,	4:27:23 PM	M

Repeated Measures AOV Table for EDA_1

Source	DF	ss	MS	F	P
subject_n (A)	29	13353.0	460.448		
Attack_Ty (B)	3	4.5	1.511	0.75	0.5258
Error A*B	87	175.5	2.018		
Valence_S (C)	1	0.5	0.521	0.26	0.6128
Error A*C	29	57.7	1.989		
Session (D)	1	1.7	1.695	0.05	0.8295
Error A*D	29	1040.8	35.891		
B*C	3	8.3	2.767	1.18	0.3224
Error A*B*C	87	204.2	2.347		

B*D Error A*B*D C*D Error A*C*D B*C*D Error A*B*C*D	3 87 1 29 3 87 479	2.9 123.8 2.8 128.9 13.2 172.2 15290.1	0.973 1.423 2.807 4.444 4.389 1.979	0.68 0.63 2.22	0.5643 0.4332 0.0918					
Grand Mean CV(subject_n*Attack_Ty) CV(subject_n*Valence_S) CV(subject_n*Session) CV(subject_n*Attack_Ty*Valenc CV(subject_n*Attack_Ty*Sessio. CV(subject_n*Attack_Ty*Valenc CV(subject_n*Attack_Ty*Valenc CV(subject_n*Attack_Ty*Valenc	1) 1)	1)		6.867 20.6 20.5 87.2 22.3 17.3 30.7 20.4	8 4 4 1 77 0					
Greenhouse-Geisser Corrected	P-Values fo	or Nonsphericity			Greenhouse	Huynh				
Source			F	Minimum Epsilon P	Geisser Epsilon	Feldt Epsilon				
Attack_Ty Attack_Ty*Valence_S Attack_Ty*Session Attack_Ty*Valence_S*Session			0.75 1.18 0.68 2.22	0.3939 0.2865 0.4150 0.1472	0.4857 0.3178 0.5050 M	0.4952 0.3195 0.5144 M				
Sphericity Assumption Tests					Greenhouse	Huvnh				
Source subject_n*Attack_Ty subject_n*Attack_Ty*Valence_S subject_n*Attack_Ty*Session subject_n*Attack_Ty*Valence_S	*Session			Minimum Epsilon 0.3333 0.3333 0.3333 0.3333	Geisser Epsilon 0.7154 0.7527 0.6490 M	Reldt Epsilon 0.7744 0.8194 0.6951	Mauchly's Statistic 0.54440 0.56279 0.45151 M	Chi Sq 16.86 15.94 22.04 M	DF 5 5 5 5	P 0.0048 0.0070 0.0005 M
Repeated Measures AOV Table f	or EDA_2									
Source subject_n (A) Attack_Ty (B) Error A*B	DF 29 3 87	ss 13470.6 52.8880 224.186	MS 464.504 17.629 2.577	F 6.84	P 0.0003					
Valence_S (C) Error A*C Session (D)	1 29 1 29	18.7634 77.3697 0.01694	18.763 2.668 0.017	7.03	0.0128 0.9805					
Error A*D B*C Error A*B*C	3 87	808.821 54.1483 171.490	27.890 18.049 1.971	9.16	0.0000					
B*D Error A*B*D	3 87	6.39117 111.531	2.130 1.282	1.66	0.1812					
C*D Error A*C*D	1 29	2.73023 102.555	2.730 3.536	0.77	0.3868					
B*C*D Error A*B*C*D Total	3 87 479	11.2812 146.842 15259.6	3.760 1.688	2.23	0.0906					
Grand Mean CV(subject_n*Attack_Ty) CV(subject_n*Valence_S) CV(subject_n*Session) CV(subject_n*Attack_Ty*Session CV(subject_n*Attack_Ty*Session CV(subject_n*Valence_S*Session CV(subject_n*Attack_Ty*Valence	1) 1)	1)		6.698 23.9 24.3 78.8 20.9 16.9 28.0	66 8 44 6 0 0					
Greenhouse-Geisser Corrected	P-Values fo	or Nonsphericity			Greenhouse	Huynh				
Source Attack_Ty Attack_Ty*Valence_S Attack_Ty*Session Attack_Ty*Valence_S*Session			F 6.84 9.16 1.66 2.23	Minimum Epsilon p 0.0140 0.0052 0.2075 0.1463	Geisser Epsilon P 0.0011 0.0002 0.1979	Feldt Epsilon P 0.0007 0.0001 0.1952 M				
Sphericity Assumption Tests					G	7h				
Source subject_n*Attack_Ty subject_n*Attack_Ty*Valence_S subject_n*Attack_Ty*Session				Minimum Epsilon 0.3333 0.3333 0.3333	Greenhouse Geisser Epsilon 0.7848 0.7200 0.6840	Huynh Feldt Epsilon 0.8586 0.7799 0.7367	Mauchly's Statistic 0.65172 0.56708 0.48269	Chi Sq 11.87 15.73 20.19	DF 5 5 5	P 0.0366 0.0077 0.0011

subject_n*Attack_Ty*Valence	e_S*Session			0.3333	М	М	М	М	5	М
Repeated Measures AOV Table	e for EDA_3									
Source subject_n (A)	DF 29	ss 16789.0	MS 578.930	F	P					
Attack_Ty (B)	3	6.7	2.241	1.39	0.2508					
Error A*B Valence_S (C)	87 1	140.1 0.4	1.611 0.377	0.17	0.6851					
Error A*C Session (D)	29 1	65.2 73.0	2.247 73.035	1.77	0.1939					
Error A*D	29	1197.7	41.300							
B*C Error A*B*C	3 87	1.5 202.6	0.513 2.329	0.22	0.8820					
B*D Error A*B*D	3 87	4.6 147.7	1.526 1.698	0.90	0.4453					
C*D Error A*C*D	1 29	0.6 74.2	0.555 2.558	0.22	0.6449					
B*C*D	3	2.2	0.737	0.37	0.7755					
Error A*B*C*D Total	87 479	173.8 18879.3	1.998							
Grand Mean CV(subject_n*Attack_Ty) CV(subject_n*Valence_S) CV(subject_n*Sesion) CV(subject_n*Attack_Ty*Vale CV(subject_n*Attack_Ty*Vale CV(subject_n*Attack_Ty*Vale CV(subject_n*Attack_Ty*Vale CV(subject_n*Attack_Ty*Vale	ence_S) sion) sion) ence_S*Sessio	n)		8.2769 15.33 18.11 77.64 18.44 15.74 19.32 17.08						
Greenhouse-Geisser Correcte	ed P-Values f	or Nonsphericity			Greenhouse	Huynh				
				Minimum Epsilon	Geisser Epsilon	Feldt Epsilon				
Source Attack_Ty			F 1.39	P 0.2477	P 0.2521	P 0.2508				
Attack_Ty*Valence_S			0.22	0.6423 0.3510	0.8688	0.8820				
Attack_Ty*Session Attack_Ty*Valence_S*Session	n		0.37	0.5482	0.4146 M	0.4207 M				
Sphericity Assumption Tests	s									
Source subject_n*Attack_Ty subject_n*Attack_Ty*Valence subject_n*Attack_Ty*Valence subject_n*Attack_Ty*Valence	e_S n			Minimum Epsilon 0.3333 0.3333 0.3333	Greenhouse Geisser Epsilon 0.9455 0.9284 0.6818	Huynh Feldt Bpsilon 1.0000 1.0000 0.7341 M	Mauchly's Statistic 0.90566 0.87467 0.42101 M	Chi Sq 2.75 3.71 23.98 M	DF 5 5 5 5	P 0.7389 0.5915 0.0002 M
Source subject_n*Attack_Ty subject_n*Attack_Ty*Valence subject_n*Attack_Ty*Session	e_S n e_S*Session			Epsilon 0.3333 0.3333 0.3333	Geisser Epsilon 0.9455 0.9284 0.6818	Feldt Epsilon 1.0000 1.0000 0.7341	Statistic 0.90566 0.87467 0.42101	2.75 3.71 23.98	5 5 5	0.7389 0.5915 0.0002
Source subject_n*Attack_Ty subject_n*Attack_Ty*Valence subject_n*Attack_Ty*Session subject_n*Attack_Ty*Valence Repeated Measures AOV Table Source	e_S n e_S*Session e for EDA_4 DF	ss	MS	Epsilon 0.3333 0.3333 0.3333	Geisser Epsilon 0.9455 0.9284 0.6818	Feldt Epsilon 1.0000 1.0000 0.7341	Statistic 0.90566 0.87467 0.42101	2.75 3.71 23.98	5 5 5	0.7389 0.5915 0.0002
Source subject_n*Attack_Ty subject_n*Attack_Ty*Valence subject_n*Attack_Ty*Session subject_n*Attack_Ty*Valence Repeated Measures AOV Table Source subject_n (A) Attack_Ty (B)	e_S n e_S*Session e for EDA_4 DF 29 3	15905.0 1.4	548.449 0.466	Epsilon 0.3333 0.3333 0.3333 0.3333	Geisser Epsilon 0.9455 0.9284 0.6818	Feldt Epsilon 1.0000 1.0000 0.7341	Statistic 0.90566 0.87467 0.42101	2.75 3.71 23.98	5 5 5	0.7389 0.5915 0.0002
Source subject_n*Attack_Ty subject_n*Attack_Ty*Valence subject_n*Attack_Ty*Session subject_n*Attack_Ty*Valence Repeated Measures AOV Table Source subject_n (A) Attack_Ty (B) Error A*B	e_S n e_S*Session e for EDA_4 DF 29 3 87	15905.0 1.4 97.3	548.449 0.466 1.119	Epsilon 0.3333 0.3333 0.3333 0.3333 F	Geisser Epsilon 0.9455 0.9284 0.6818 M	Feldt Epsilon 1.0000 1.0000 0.7341	Statistic 0.90566 0.87467 0.42101	2.75 3.71 23.98	5 5 5	0.7389 0.5915 0.0002
Source subject_n*Attack_Ty subject_n*Attack_Ty*Valence subject_n*Attack_Ty*Session subject_n*Attack_Ty*Valence Repeated Measures AOV Table Source subject_n (A) Attack_Ty (B) Error A*B Valence_S (C) Error A*C	e_S n e_S*Session e for EDA_4 DF 29 3 87 1 29	15905.0 1.4 97.3 2.2 55.3	548.449 0.466 1.119 2.220 1.908	Epsilon 0.3333 0.3333 0.3333 0.3333 F P 0.42 1.16	Geisser Epsilon 0.9455 0.9284 0.6818 M	Feldt Epsilon 1.0000 1.0000 0.7341	Statistic 0.90566 0.87467 0.42101	2.75 3.71 23.98	5 5 5	0.7389 0.5915 0.0002
Source subject_n*Attack_Ty subject_n*Attack_Ty*Valence subject_n*Attack_Ty*Valence subject_n*Attack_Ty*Valence Repeated Measures AOV Table Source subject_n (A) Attack_Ty (B) Error A*B Valence_S (C) Error A*C Session (D) Error A*D	e_S n n e_S*Session e for EDA_4 DF 29 3 87 1 29 1 29 29	15905.0 1.4 97.3 2.2 55.3 54.8 1197.4	548.449 0.466 1.119 2.220 1.908 54.822 41.289	Epsilon 0.3333 0.3333 0.3333 0.3333 0.42 1.16 1.33	Geisser Epsilon 0.9455 0.9284 0.6818 M	Feldt Epsilon 1.0000 1.0000 0.7341	Statistic 0.90566 0.87467 0.42101	2.75 3.71 23.98	5 5 5	0.7389 0.5915 0.0002
Source subject_n*Attack_Ty subject_n*Attack_Ty*Valence subject_n*Attack_Ty*Valence subject_n*Attack_Ty*Valence Repeated Measures AOV Table Source subject_n (A) Attack_Ty (B) Error A*B Valence_S (C) Error A*C Session (D)	e_S n e_S*Session e_for EDA_4 DF 29 3 87 1 29 1	15905.0 1.4 97.3 2.2 55.3 54.8	548.449 0.466 1.119 2.220 1.908 54.822	Epsilon 0.3333 0.3333 0.3333 0.3333 F P 0.42 1.16	Geisser Epsilon 0.9455 0.9284 0.6818 M	Feldt Epsilon 1.0000 1.0000 0.7341	Statistic 0.90566 0.87467 0.42101	2.75 3.71 23.98	5 5 5	0.7389 0.5915 0.0002
Source subject_n*Attack_Ty subject_n*Attack_Ty*Valence subject_n*Attack_Ty*Valence subject_n*Attack_Ty*Valence Repeated Measures AOV Table Source subject_n (A) Attack_Ty (B) Error A*B Valence_S (C) Error A*C Session (D) Error A*D B*C Error A*B*C B*D	e_S n e_S*Session e_S*Session e for EDA_4 DF 29 3 87 1 29 1 29 3 87 87 8 87 8 87 8 87 8 87 8 87 8 87	15905.0 1.4 97.3 2.2 55.3 54.8 1197.4 0.8 158.0 2.1	548.449 0.466 1.119 2.220 1.908 54.822 41.289 0.256 1.816 0.691	Epsilon 0.3333 0.3333 0.3333 0.3333 0.42 1.16 1.33	Geisser Epsilon 0.9455 0.9284 0.6818 M	Feldt Epsilon 1.0000 1.0000 0.7341	Statistic 0.90566 0.87467 0.42101	2.75 3.71 23.98	5 5 5	0.7389 0.5915 0.0002
Source subject_n*Attack_Ty subject_n*Attack_Ty*Valence subject_n*Attack_Ty*Valence subject_n*Attack_Ty*Valence Repeated Measures AOV Table Source subject_n (A) Attack_Ty (B) Error A*B Valence_S (C) Error A*C Session (D) Error A*D B*C Error A*B*C B*D Error A*B*C C*D	e_S n e_S*Session e_for EDA_4 DF 29 3 87 1 29 1 29 3 87 87 1 29 1 1 29 3 87	15905.0 1.4 97.3 2.2 55.3 54.8 1197.4 0.8 158.0 2.1 114.9	548.449 0.466 1.119 2.220 1.908 54.822 41.289 0.256 1.816 0.691 1.321 1.201	Epsilon 0.3333 0.3333 0.3333 0.3333 F 0.42 1.16 1.33 0.14	Geisser Epsilon 0.9455 0.9284 0.6818 M P 0.7413 0.2896 0.2586 0.9353	Feldt Epsilon 1.0000 1.0000 0.7341	Statistic 0.90566 0.87467 0.42101	2.75 3.71 23.98	5 5 5	0.7389 0.5915 0.0002
Source subject_n*Attack_Ty subject_n*Attack_Ty*Valence subject_n*Attack_Ty*Valence subject_n*Attack_Ty*Valence Repeated Measures AOV Table Source subject_n (A) Attack_Ty (B) Error A*B Valence_S (C) Error A*C Session (D) Error A*D B*C Error A*B*C B*D Error A*B*C C*D Error A*C*D B*C*D Error A*C*D	s_S n n_e_s*Session s for EDA_4 DF 29 3 87 1 29 1 29 3 87 3 87 29 3 3 87 29 3 3	15905.0 1.4 97.3 2.2 55.3 54.8 1197.4 0.8 158.0 2.1 114.9 1.2 68.4 4.6	548.449 0.466 1.119 2.220 1.908 54.822 41.289 0.256 1.816 0.691 1.321 1.201 2.358 1.550	Epsilon 0,3333 0,3333 0,3333 0,3333 0,3333 F 0,42 1,16 1,33 0,14 0,52	Geisser Epsilon 0.9455 0.9284 0.6818 M P 0.7413 0.2896 0.2586 0.9353 0.6674	Feldt Epsilon 1.0000 1.0000 0.7341	Statistic 0.90566 0.87467 0.42101	2.75 3.71 23.98	5 5 5	0.7389 0.5915 0.0002
Source subject_n*Attack_Ty subject_n*Attack_Ty*Valence subject_n*Attack_Ty*Valence subject_n*Attack_Ty*Valence Repeated Measures AOV Table Source subject_n (A) Attack_Ty (B) Error A*B Valence_S (C) Error A*C Session (D) Error A*D B*C Error A*B*C B*D Error A*B*C B*D Error A*B*D C*D Error A*C*D	e_S n ne_S*Session e for EDA_4 DF 29 3 87 1 29 3 87 1 29 3 87 1 29 29 3 87 1 29 29	15905.0 1.4 97.3 2.2 55.3 54.8 1197.4 0.8 158.0 2.1 114.9 1.2 68.4	548.449 0.466 1.119 2.220 1.908 54.822 41.289 0.256 1.816 0.691 1.321 1.201 2.358	Epsilon 0.3333 0.3333 0.3333 0.3333 0.3333 P 0.42 1.16 1.33 0.14 0.52 0.51	Geisser Epsilon 0.9455 0.9284 0.6818 M P 0.7413 0.2896 0.2586 0.9353 0.6674 0.4811	Feldt Epsilon 1.0000 1.0000 0.7341	Statistic 0.90566 0.87467 0.42101	2.75 3.71 23.98	5 5 5	0.7389 0.5915 0.0002
Source subject_n*Attack_Ty subject_n*Attack_Ty*Valence subject_n*Attack_Ty*Valence subject_n*Attack_Ty*Valence subject_n*Attack_Ty*Valence Source subject_n (A) Attack_Ty (B) Error A*B Valence_S (C) Error A*C Session (D) Error A*D B*C Error A*B*C B*D Error A*B*C B*D Error A*B*C*D Total Grand Mean CV(subject_n*Attack_Ty) CV(subject_n*Attack_Ty*Vale CV(subject_n*Attack_Ty*Vale CV(subject_n*Attack_Ty*Vale CV(subject_n*Attack_Ty*Sesi CV(subject_n*Attack_Ty*Vale CV(subject_n*Attack_Ty*Vale CV(subject_n*Attack_Ty*Sesi CV(subject_n*Attack_Ty*Vale CV(subject_n*Att	e_S n e_S*Session e_S*Session e_for EDA_4 DF 29 3 87 1 29 1 29 3 87 1 29 3 87 479 ence_S*Session	15905.0 1.4 97.3 2.2 55.3 54.8 1197.4 0.8 158.0 2.1 114.9 1.2 68.4 4.6 182.4 17845.9	548.449 0.466 1.119 2.220 1.908 54.822 41.289 0.256 1.816 0.691 1.321 1.201 2.358 1.550	Epsilon 0.3333 0.3333 0.3333 0.3333 0.3333 P 0.42 1.16 1.33 0.14 0.52 0.51	Geisser Epsilon 0.9455 0.9284 0.6818 M P 0.7413 0.2896 0.2586 0.9353 0.6674 0.4811 0.5314	Feldt Epsilon 1.0000 1.0000 0.7341	Statistic 0.90566 0.87467 0.42101	2.75 3.71 23.98	5 5 5	0.7389 0.5915 0.0002
Source subject_n*Attack_Ty subject_n*Attack_Ty*Valence subject_n*Attack_Ty*Valence subject_n*Attack_Ty*Valence subject_n*Attack_Ty*Valence Repeated Measures AOV Table Source subject_n (A) Attack_Ty (B) Error A*B Valence_S (C) Error A*C Session (D) Error A*D B*C Error A*B*C B*D Error A*B*C B*D Error A*B*C B*D Error A*B*C B*D Error A*C*D B*C*C Error A*C*D B*C*C C*D C*D Error A*C*D B*C*D C*D C*D C*D C*D C*D C*D C*D C*D C*D	e_S n e_S*Session e_S*Session e_for EDA_4 DF 29 3 87 1 29 1 29 3 87 1 29 3 87 479 ence_S*Session	15905.0 1.4 97.3 2.2 55.3 54.8 1197.4 0.8 158.0 2.1 114.9 1.2 68.4 4.6 182.4 17845.9	548.449 0.466 1.119 2.220 1.908 54.822 41.289 0.256 1.816 0.691 1.321 1.201 2.358 1.550	Epsilon 0,3333 0,3333 0,3333 0,3333 0,3333 F 0,42 1,16 1,33 0,14 0,52 0,51 0,74 7,8074 13,55 17,69 82,30 17,26 14,72 19,67	Geisser Epsilon 0.9455 0.9284 0.6818 M P 0.7413 0.2896 0.2586 0.9353 0.6674 0.4811 0.5314	Feldt Epsilon 1.0000 1.0000 0.7341	Statistic 0.90566 0.87467 0.42101	2.75 3.71 23.98	5 5 5	0.7389 0.5915 0.0002

Source Attack_Ty* Attack_Ty*Valence_S Attack_Ty*Session Attack_Ty*Valence_S*Session		F 0.42 0.14 0.52 0.74	Epsilon p 0.5236 0.7103 0.4752 0.3969	Epsilon P 0.7088 0.9150 0.6266 M	Epsilon				
Sphericity Assumption Tests			Minimum	Greenhouse Geisser	Huynh Feldt	Mauchly's			
Source subject_n*Attack_Ty subject_n*Attack_Ty*Valence_S subject_n*Attack_Ty*Vession subject_n*Attack_Ty*Valence_S*Session			Epsilon 0.3333 0.3333 0.3333 0.3333	Epsilon 0.8474 0.8680 0.7955 M	Epsilon 0.9357 0.9612 0.8717 M	Statistic 0.68487 0.74121 0.70262 M	Chi Sq 10.49 8.30 9.78 M	DF 5 5 5 5	0.0624 0.1404 0.0816 M
			·····						
Statistix 10.0	2	/25/2014, 4:35:	36 PM						
Repeated Measures AOV Table for DEL_HR	_c								
Source DF	ss	MS	F	P					
subject_n (A) 29 Attack_Ty (B) 3	2951.9 629.8	101.789 209.921	3.37	0.0222					
Error A*B 87 Valence_S (C) 1	5422.5 393.4	62.327 393.397	4.19	0.0498					
Error A*C 29 Session (D) 1	2722.8 17.4	93.891 17.433	0.33	0.5710					
Error A*D 29 B*C 3	1539.4 75.2	53.083 25.076	0.34	0.7977					
Error A*B*C 87 B*D 3	6449.8 50.7	74.135 16.915	0.21	0.8887					
Error A*B*D 87 C*D 1	6982.5 15.0	80.259 14.991	0.15	0.7030					
Error A*C*D 29 B*C*D 3 Error A*B*C*D 87	2932.3 338.9 4816.9	101.113 112.956 55.367	2.04	0.1141					
Total 479	35338.6								
Grand Mean CV(subject_n*Attack_Ty) CV(subject_n*Valence_S) CV(subject_n*Session) CV(subject_n*Attack_Ty*Valence_S) CV(subject_n*Attack_Ty*Session) CV(subject_n*Attack_Ty*Session) CV(subject_n*Valence_S*Session) CV(subject_n*Valence_S*Session)	on)		-0.992 -795.1 -975.9 -733.8 -867.2 -902.3 -1012.7 -749.4	15 33 11 20 81 17					
Greenhouse-Geisser Corrected P-Values	for Nonsphericity			Greenhouse	Huynh				
			Minimum Epsilon	Geisser Epsilon	Feldt Epsilon				
Source Attack_Ty		F 3.37	P 0.0767	P 0.0273	p 0.0227				
Attack_Ty*Valence_S Attack_Ty*Session		0.34	0.5653 0.6496	0.7673 0.8696	0.7877 0.8884				
Attack_Ty*Valence_S*Session		2.04	0.1639	M	M				
Sphericity Assumption Tests				Greenhouse	Huynh				
Source subject_n*Attack_Ty subject_n*Attack_Ty*Valence_S subject_n*Attack_Ty*Valence_S*Session subject_n*Attack_Ty*Valence_S*Session			Minimum Epsilon 0.3333 0.3333 0.3333	Geisser Epsilon 0.8885 0.8593 0.8976	Feldt Epsilon 0.9868 0.9505 0.9982	Mauchly's Statistic 0.79106 0.73421 0.85239 M	Chi Sq 6.50 8.57 4.43 M	DF 5 5 5 5	P 0.2608 0.1277 0.4896 M
Repeated Measures AOV Table for DEL_PT	T_C								
Source DF	ss	MS	F	P					
				00					

subject_n (A) Attack_Ty (B)	29 3	128692 18786	4437.7 6262.0	1.45	0.2325					
Error A*B Valence_S (C)	87 1	374476 4851	4304.3 4851.4	1.04	0.3173					
Error A*C Session (D)	29 1	135876 232	4685.4 232.4	0.08	0.7853					
Error A*D B*C	29 3	89111 10078	3072.8 3359.4	0.73	0.5366					
Error A*B*C B*D	87 3	400110 18904	4599.0 6301.4	1.40	0.2493					
Error A*B*D C*D	87 1	392580 34544	4512.4 34544.1	6.68	0.0151					
Error A*C*D B*C*D	29 3	150000 17642	5172.4 5880.8	1.62	0.1915					
Error A*B*C*D Total	87 479	316603 2092487	3639.1							
Grand Mean CV(subject_n*Attack_Ty) CV(subject_n*Valence_S) CV(subject_n*Session) CV(subject_n*Attack_Ty*Valen CV(subject_n*Attack_Ty*Sessi CV(subject_n*Attack_Ty*Valen tV(subject_n*Attack_Ty*Valen CV(subject_n*Attack_Ty*Valen	ion) ion)	n)		0.45(14579. 15211.(12318. 15070.: 14927.(15982.: 13405.!	11 16 11 15 16 11					
Greenhouse-Geisser Corrected	l P-Values fo	or Nonsphericity			Greenhouse	Huynh				
				Minimum Epsilon	Geisser Epsilon	Feldt Epsilon				
Source Attack_Ty			F 1.45	P 0.2375	P 0.2348	P 0.2325				
Attack_Ty*Valence_S Attack_Ty*Session			0.73 1.40	0.3997 0.2469	0.5226 0.2551	0.5358 0.2542				
Attack_Ty*Valence_S*Session			1.62	0.2138	М	М				
Sphericity Assumption Tests					Greenhouse	Huynh				
Source				Minimum Epsilon	Geisser Epsilon	Feldt Epsilon	Mauchly's Statistic	Chi Sq	DF	P
subject_n*Attack_Ty subject_n*Attack_Ty*Valence_				0.3333	0.9305 0.8944	1.0000 0.9943	0.87593 0.82157	3.67 5.45	5 5	0.5975 0.3636
subject_n*Attack_Ty										
subject_n*Attack_Ty subject_n*Attack_Ty*Valence_ subject_n*Attack_Ty*Session	_S*Session	_c		0.3333	0.8944 0.7195	0.9943 0.7794	0.82157 0.54075	5.45 17.04	5 5	0.3636 0.0044
subject_n*Attack_Ty subject_n*Attack_Ty*Valence_ subject_n*Attack_Ty*Session subject_n*Attack_Ty*Valence_ Repeated Measures AOV Table Source	_S*Session for DEL_EDA_ DF	ss	MS	0.3333	0.8944 0.7195	0.9943 0.7794	0.82157 0.54075	5.45 17.04	5 5	0.3636 0.0044
subject_n*Attack_Ty subject_n*Attack_Ty*Valence_ subject_n*Attack_Ty*Session subject_n*Attack_Ty*Valence_ Repeated Measures AOV Table Source subject_n (A) Attack_Ty (B)	_S*Session for DEL_EDA_ DF 29 3	ss 118.820 72.6100	4.0972 24.2033	0.3333 0.3333 0.3333	0.8944 0.7195 M	0.9943 0.7794	0.82157 0.54075	5.45 17.04	5 5	0.3636 0.0044
subject_n*Attack_Ty subject_n*Attack_Ty*Valence_ subject_n*Attack_Ty*Session subject_n*Attack_Ty*Valence_ Repeated Measures AOV Table Source subject_n (A) Attack_Ty (B) Error A*B Valence_S (C)	_S*Session for DEL_EDA_ DF 29 3 87 1	ss 118.820 72.6100 276.501 13.0336	4.0972 24.2033 3.1782 13.0336	0.3333 0.3333 0.3333	0.8944 0.7195 M	0.9943 0.7794	0.82157 0.54075	5.45 17.04	5 5	0.3636 0.0044
subject_n*Attack_Ty*valence_subject_n*Attack_Ty*Valence_subject_n*Attack_Ty*Valence_ry*Letack_Ty*Valence_retack_Ty*Valence_retack_Ty*Valence_retack_Ty*Valence_retack_Ty*Valence_retack_Ty*(B) Error A*B Valence_S (C) Error A*C Session (D)	S*Session for DEL_EDA_ DF 29 3 87 1 29 1	ss 118.820 72.6100 276.501 13.0336 73.7696 2.05032	4.0972 24.2033 3.1782 13.0336 2.5438 2.0503	0.3333 0.3333 0.3333	0.8944 0.7195 M P 0.0001	0.9943 0.7794	0.82157 0.54075	5.45 17.04	5 5	0.3636 0.0044
subject_n*Attack_Ty*Valence_subject_n*Attack_Ty*Valence_subject_n*Attack_Ty*Valence_subject_n*Attack_Ty*Valence_Repeated Measures AOV Table Source subject_n (A) Attack_Ty (B) Error A*B Valence_S (C) Error A*C Session (D) Error A*D B*C	S*Session for DEL_EDA_ DF 29 3 87 1 29 1 29 3	\$8 118.820 72.6100 276.501 13.0336 73.7696 2.05032 82.2104 53.3857	4.0972 24.2033 3.1782 13.0336 2.5438 2.0503 2.8348 17.7952	0.3333 0.3333 0.3333 F 7.62	0.8944 0.7195 M P 0.0001	0.9943 0.7794	0.82157 0.54075	5.45 17.04	5 5	0.3636 0.0044
subject_n*Attack_Ty*Valence_ subject_n*Attack_Ty*Valence_ subject_n*Attack_Ty*Valence_ subject_n*Attack_Ty*Valence_ Repeated Measures AOV Table Source subject_n (A) Attack_Ty (B) Error A*B Valence_S (C) Error A*C Session (D) Error A*D B*C Error A*B Error A*B Error A*B Error A*B Error A*C	S*Session for DEL_EDA_ DF 29 3 87 1 29 1 29 3 87 3 87 3	\$8 118.820 72.6100 276.501 13.0336 73.7696 2.05032 82.2104 53.3857 178.893 1.97642	4.0972 24.2033 3.1782 13.0336 2.5438 2.0503 2.8348 17.7952 2.0562 0.6588	0.3333 0.3333 0.3333 F 7.62 5.12	0.8944 0.7195 M P 0.0001 0.0313 0.4020	0.9943 0.7794	0.82157 0.54075	5.45 17.04	5 5	0.3636 0.0044
subject_n*Attack_Ty subject_n*Attack_Ty*Valence_ subject_n*Attack_Ty*Valence_ subject_n*Attack_Ty*Valence_ Repeated Measures AOV Table Source subject_n (A) Attack_Ty (B) Error A*B Valence_S (C) Error A*C Session (D) Error A*D B*C Error A*B*C B*D Error A*B*C C*D C*D C*D C*D C*D C*D C*D C*D C*D C	S*Session for DEL_EDA DF 29 3 87 1 29 1 29 3 87 3 87 1	\$8 118.820 72.6100 276.501 13.0336 73.7696 2.05032 82.2104 53.3857 178.893 1.97642 130.733 5.254E-04	4.09.72 24.2033 3.1782 13.0336 2.5438 2.0503 2.8348 17.7952 2.0562 0.6558 1.5027 0.0005	0.3333 0.3333 0.3333 F 7.62 5.12 0.72 8.65	0.8944 0.7195 M P 0.0001 0.0313 0.4020 0.0000	0.9943 0.7794	0.82157 0.54075	5.45 17.04	5 5	0.3636 0.0044
subject_n*Attack_Ty subject_n*Attack_Ty*Valence_ subject_n*Attack_Ty*Valence_ subject_n*Attack_Ty*Valence_ Repeated Measures AOV Table Source subject_n (A) Attack_Ty (B) Error A*B Valence_S (C) Error A*C Session (D) Error A*D B*C Error A*B*C B*D Error A*B*D C*D Error A*C*D Error A*C*D B*C*D	S*Session for DEL_EDA_ DF 29 3 87 1 29 1 29 3 87 87 7 29 3 87 29 3 87 3 87	\$\$ 118.820 72.6100 276.501 13.0336 73.7696 2.05032 82.2104 53.3857 178.893 1.97642 130.733 5.254E-04 82.4043 9.61118	4.09.72 24.2033 3.1782 13.0336 2.5438 2.0503 2.8348 17.7952 2.0562 0.6588 1.5027 0.0005 2.8415 3.2037	0.3333 0.3333 0.3333 F 7.62 5.12 0.72 8.65	0.8944 0.7195 M P 0.0001 0.0313 0.4020 0.0000 0.7261	0.9943 0.7794	0.82157 0.54075	5.45 17.04	5 5	0.3636 0.0044
subject_n*Attack_Ty subject_n*Attack_Ty*Valence_ subject_n*Attack_Ty*Valence_ subject_n*Attack_Ty*Valence_ Repeated Measures AOV Table Source subject_n (A) Attack_Ty (B) Error A*B Valence_S (C) Error A*C Session (D) Error A*D B*C Error A*B*C B*D Error A*B*C B*D Error A*B*D C*D Error A*C*D Error A*C*D Error A*C*D	S*Session for DEL_EDA DF 29 3 87 1 29 29 3 87 1 29 1 29 3 87 1 29 1 29 29 3 87	\$\$ 118.820 72.6100 276.501 13.0336 73.7696 2.05032 82.2104 53.3857 178.893 1.97642 130.733 5.254E-04 82.4043	4.0972 24.2033 3.1782 13.0336 2.5438 2.0503 2.8348 17.7952 2.0562 0.6588 1.5027 0.0005 2.8415	0.3333 0.3333 0.3333 0.3333 F 7.62 5.12 0.72 8.65 0.44 0.00	0.8944 0.7195 M P 0.0001 0.0313 0.4020 0.0000 0.7261 0.9892	0.9943 0.7794	0.82157 0.54075	5.45 17.04	5 5	0.3636 0.0044
subject_n*Attack_Ty subject_n*Attack_Ty*Valence_ subject_n*Attack_Ty*Session subject_n*Attack_Ty*Valence_ Repeated Measures AOV Table Source subject_n (A) Attack_Ty (B) Error A*B Valence_S (C) Error A*C Session (D) Error A*C B*D Error A*B*C B*D Error A*B*C B*D Error A*B*C B*D Error A*B*D C*D Error A*B*D C*D Error A*C*D B*C*D Error A*B*C*D Total Grand Mean	S*Session for DEL_EDA DF 29 3 87 1 29 1 29 3 87 29 3 87 3 87 4 29 3 87	\$8 118.820 72.6100 276.501 13.0336 73.7696 2.05032 82.2104 53.3857 178.893 1.97642 130.733 5.254E-04 82.4043 9.61118	4.09.72 24.2033 3.1782 13.0336 2.5438 2.0503 2.8348 17.7952 2.0562 0.6588 1.5027 0.0005 2.8415 3.2037	0.3333 0.3333 0.3333 0.3333 F 7.62 5.12 0.72 8.65 0.44 0.00 1.27	0.8944 0.7195 M P 0.0001 0.0313 0.4020 0.0000 0.7261 0.9892 0.2898	0.9943 0.7794	0.82157 0.54075	5.45 17.04	5 5	0.3636 0.0044
subject_n*Attack_Ty subject_n*Attack_Ty*Valence_ subject_n*Attack_Ty*Valence_ subject_n*Attack_Ty*Valence_ Repeated Measures AOV Table Source subject_n (A) Attack_Ty (B) Error A*B Valence_S (C) Error A*C Session (D) Error A*C Error A*B*C B*D Error A*B*C B*D Error A*B*C B*D Error A*B*D C*D Error A*C*D Error A*B*C*D Total Grand Mean CV(subject_n*Valence_S)	S*Session for DEL_EDA DF 29 3 87 1 29 1 29 3 87 29 3 87 3 87 4 29 3 87	\$8 118.820 72.6100 276.501 13.0336 73.7696 2.05032 82.2104 53.3857 178.893 1.97642 130.733 5.254E-04 82.4043 9.61118	4.09.72 24.2033 3.1782 13.0336 2.5438 2.0503 2.8348 17.7952 2.0562 0.6588 1.5027 0.0005 2.8415 3.2037	0.3333 0.3333 0.3333 0.3333 0.3333 F 7.62 5.12 0.72 8.65 0.44 0.00 1.27	0.8944 0.7195 M P 0.0001 0.0313 0.4020 0.0000 0.7261 0.9892 0.2898	0.9943 0.7794	0.82157 0.54075	5.45 17.04	5 5	0.3636 0.0044
subject_n*Attack_Ty subject_n*Attack_Ty*Valence_ subject_n*Attack_Ty*Valence_ subject_n*Attack_Ty*Valence_ Repeated Measures AOV Table Source subject_n (A) Attack_Ty (B) Error A*B Valence_S (C) Error A*C Session (D) Error A*C Error A*B*C B*D Error A*B*C B*D Error A*B*C B*O Error A*B*C B*O Error A*B*C B*C C*D Error A*B*C B*C C*D Error A*B*C B*C C*O Error A*B*C B*C C*O Error A*B*C B*C Error A*B*C*D Total Grand Mean CV(subject_n*Attack_Ty) CV(subject_n*Valence_S) CV(subject_n*Esssion) CV(subject_n*Esssion)	S*Session for DEL_EDA DF 29 3 87 1 29 3 87 1 29 3 87 479	\$8 118.820 72.6100 276.501 13.0336 73.7696 2.05032 82.2104 53.3857 178.893 1.97642 130.733 5.254E-04 82.4043 9.61118	4.09.72 24.2033 3.1782 13.0336 2.5438 2.0503 2.8348 17.7952 2.0562 0.6588 1.5027 0.0005 2.8415 3.2037		0.8944 0.7195 M P 0.0001 0.0313 0.4020 0.0000 0.7261 0.9892 0.2898	0.9943 0.7794	0.82157 0.54075	5.45 17.04	5 5	0.3636 0.0044
subject_n*Attack_Ty subject_n*Attack_Ty*Valence subject_n*Attack_Ty*Valence subject_n*Attack_Ty*Valence Repeated Measures AOV Table Source subject_n (A) Attack_Ty (B) Error A*B Valence_S (C) Error A*C Session (D) Error A*B Error A*B*C B*D Error A*B*C B*D Error A*B*C C*D Error A*C*D B*C*D Error A*C*D B*C*D C*D Total Grand Mean CV(subject_n*Attack_Ty*Cv(subject_n*Session) CV(subject_n*Attack_Ty*Valen CV(subject_n*Attack_Ty*Valen CV(subject_n*Attack_Ty*Sessi CV(subject_n*Attack_Ty*Valen CV(subject_n*Attack_Ty*Sessi CV(subject_n*Attack_Ty*Valen CV(subject_n*Attack_Ty*Valen CV(subject_n*Attack_Ty*Valen CV(subject_n*Attack_Ty*Valen CV(subject_n*Attack_Ty*Valen CV(subject_n*Attack_Ty*Valen CV(subject_n*Attack_Ty*Valen CV(subject_n*Attack_Ty*Valen CV(subject_n*Attack_Ty*Valen CV(subject_n*Attack_Ty*Cytopic CV(subject_n*Attack_Ty*Cytopic CV(subject_n*Attack_Ty*Cytopic CV(subject_n*Attack_Ty*Cytopic CV(subject_n*Cytopic CV(subjec	S*Session for DEL_EDA_ DF 29 3 87 1 29 1 29 3 87 479 3 87 479	\$8 118.820 72.6100 276.501 13.0336 73.7696 2.05032 82.2104 53.3857 178.893 1.97642 130.733 5.254E-04 82.4043 9.61118 219.483 1315.48	4.09.72 24.2033 3.1782 13.0336 2.5438 2.0503 2.8348 17.7952 2.0562 0.6588 1.5027 0.0005 2.8415 3.2037	0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.344 0.00 1.27 -0.161 -1056 -944 -947 -849 -726 -998	0.8944 0.7195 M P 0.0001 0.0313 0.4020 0.0000 0.7261 0.9892 0.2898	0.9943 0.7794	0.82157 0.54075	5.45 17.04	5 5	0.3636 0.0044
subject_n*Attack_Ty*valence_subject_n*Attack_Ty*Valence_subject_n*Attack_Ty*Valence_subject_n*Attack_Ty*Valence_Repeated Measures AOV Table Source subject_n (A) Attack_Ty (B) Error A*B Valence_S (C) Error A*C Session (D) Error A*D B*C Error A*B*C B*D Error A*B*C B*D Error A*B*C B*D Error A*B*C C*D Error A*B*C*D B*C*D Total Grand Mean CV(subject_n*Attack_Ty*Valen	S*Session for DEL_EDA_ DF 29 3 87 1 29 1 29 3 87 479 acc_S) con) coe_S*Session	\$8 118.820 72.6100 276.501 13.0336 73.7696 2.05032 82.2104 53.3857 178.893 1.97642 130.733 5.254E-04 82.4043 9.61118 219.483 1315.48	4.09.72 24.2033 3.1782 13.0336 2.5438 2.0503 2.8348 17.7952 2.0562 0.6588 1.5027 0.0005 2.8415 3.2037	0.3333 0.3333 0.3333 0.3333 0.3333 F 7 7.62 5.12 0.72 8.65 0.44 0.00 1.27 -0.16(-1.056; -944; -949; -949; -949; -949; -949; -949; -949; -949; -949; -949; -949; -949; -949; -726; -7	0.8944 0.7195 M P 0.0001 0.0313 0.4020 0.0000 0.7261 0.9892 0.2898	0.9943 0.7794	0.82157 0.54075	5.45 17.04	5 5	0.3636 0.0044
subject_n*Attack_Ty subject_n*Attack_Ty*Valence subject_n*Attack_Ty*Valence subject_n*Attack_Ty*Valence Repeated Measures AOV Table Source subject_n (A) Attack_Ty (B) Error A*B Valence_S (C) Error A*C Session (D) Error A*B Error A*B*C B*D Error A*B*C B*D Error A*B*C C*D Error A*C*D B*C*D Error A*C*D B*C*D C*D Total Grand Mean CV(subject_n*Attack_Ty*Cv(subject_n*Session) CV(subject_n*Attack_Ty*Valen CV(subject_n*Attack_Ty*Valen CV(subject_n*Attack_Ty*Sessi CV(subject_n*Attack_Ty*Valen CV(subject_n*Attack_Ty*Sessi CV(subject_n*Attack_Ty*Valen CV(subject_n*Attack_Ty*Valen CV(subject_n*Attack_Ty*Valen CV(subject_n*Attack_Ty*Valen CV(subject_n*Attack_Ty*Valen CV(subject_n*Attack_Ty*Valen CV(subject_n*Attack_Ty*Valen CV(subject_n*Attack_Ty*Valen CV(subject_n*Attack_Ty*Valen CV(subject_n*Attack_Ty*Cytopic CV(subject_n*Attack_Ty*Cytopic CV(subject_n*Attack_Ty*Cytopic CV(subject_n*Attack_Ty*Cytopic CV(subject_n*Cytopic CV(subjec	S*Session for DEL_EDA_ DF 29 3 87 1 29 1 29 3 87 479 acc_S) con) coe_S*Session	\$8 118.820 72.6100 276.501 13.0336 73.7696 2.05032 82.2104 53.3857 178.893 1.97642 130.733 5.254E-04 82.4043 9.61118 219.483 1315.48	4.09.72 24.2033 3.1782 13.0336 2.5438 2.0503 2.8348 17.7952 2.0562 0.6588 1.5027 0.0005 2.8415 3.2037	0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3233 0.44 0.00 1.27 -0.161 -1056 -944 -947 -849 -726 -998'	0.8944 0.7195 M P 0.0001 0.0313 0.4020 0.0000 0.7261 0.9892 0.2898	0.9943 0.7794	0.82157 0.54075	5.45 17.04	5 5	0.3636 0.0044
subject_n*Attack_Ty subject_n*Attack_Ty*Valence_ subject_n*Attack_Ty*Valence_ subject_n*Attack_Ty*Valence_ Repeated Measures AOV Table Source subject_n (A) Attack_Ty (B) Error A*B Valence_S (C) Error A*B Valence_S (C) Error A*C Session (D) Error A*D Error A*B*C B*D Error A*B*C B*D Error A*B*C B*D Error A*B*C O'*D Error A*B*C B*O Error A*B*C U'(subject_n*Attack_Ty) CV(subject_n*Attack_Ty*Valen Greenhouse-Geisser Corrected	S*Session for DEL_EDA_ DF 29 3 87 1 29 1 29 3 87 479 acc_S) con) coe_S*Session	\$8 118.820 72.6100 276.501 13.0336 73.7696 2.05032 82.2104 53.3857 178.893 1.97642 130.733 5.254E-04 82.4043 9.61118 219.483 1315.48	4.09.72 24.2033 3.1782 13.0336 2.5438 2.0503 2.8348 17.7952 2.0562 0.6588 1.5027 0.0005 2.8415 3.2037 2.55228	0.3333 0.3333 0.3333 0.3333 0.3333 F 7.62 5.12 0.72 8.65 0.44 0.00 1.27 -0.16(-1056.2-941.6-941.6-941.6-941.6-941.6-941.6-941.6-1941.6-	0.8944 0.7195 M P 0.0001 0.0313 0.4020 0.0000 0.7261 0.9892 0.2898	0.9943 0.7794 M Huynh Feldt Epsilon	0.82157 0.54075	5.45 17.04	5 5	0.3636 0.0044
subject_n*Attack_Ty*valence_subject_n*Attack_Ty*Valence_subject_n*Attack_Ty*Valence_subject_n*Attack_Ty*Valence_Repeated Measures AOV Table Source subject_n (A) Attack_Ty (B) Error A*B Valence_S (C) Error A*C Session (D) Error A*D B*C Error A*B*C B*D Error A*B*C B*D Error A*B*C B*D Error A*B*C C*D Error A*B*C*D B*C*D Total Grand Mean CV(subject_n*Attack_Ty*Valen	S*Session for DEL_EDA_ DF 29 3 87 1 29 1 29 3 87 479 acc_S) con) coe_S*Session	\$8 118.820 72.6100 276.501 13.0336 73.7696 2.05032 82.2104 53.3857 178.893 1.97642 130.733 5.254E-04 82.4043 9.61118 219.483 1315.48	4.09.72 24.2033 3.1782 13.0336 2.5438 2.0503 2.8348 17.7952 2.0562 0.6588 1.5027 0.0005 2.8415 3.2037	0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.72 0.72 8.65 0.44 0.00 1.27 -0.16(-1056.2 -944.9 -997.1 -849.9 -726.2 -998.2 -941.0	0.8944 0.7195 M P 0.0001 0.0313 0.4020 0.0000 0.7261 0.9892 0.2898	0.9943 0.7794 M Huynh Feldt	0.82157 0.54075	5.45 17.04	5 5	0.3636 0.0044

Attack_Ty*Valence_S*Session Sphericity Assumption Tests Source subject_n*Attack_Ty subject_n*Attack_Ty*Valence_S subject_n*Attack_Ty*Session subject_n*Attack_Ty*Valence_S*Session	1.27	0.2690 Minimum Epsilon 0.3333 0.3333 0.3333 0.3333	M Greenhouse Geisser Epsilon 0.8240 0.8383 0.9333 M	M Huynh Feldt Epsilon 0.9067 0.9244 1.0000 M	Mauchly's Statistic 0.72984 0.70717 0.90006 M	Chi Sq 8.73 9.61 2.92 M	5 0.	P 1203 0872 7125 M
tatistix 10.0	2/25/2014, 5:03:	10 PM						
Repeated Measures AOV Table for DEL_EDA_R								
Source DF subject_n (A) 29 676	ss Ms .47 23.3264	F	P					
Attack_Ty (B) 3 8 Error A*B 87 333	.25 2.7501 .21 3.8300	0.72	0.5438					
	.89 4.8901	1.58	0.2185					
Session (D) 1 75	.64 3.0910 .79 75.7932	14.67	0.0006					
	.35 1.4484	0.59	0.6212					
	.56 1.8545	0.66	0.5784					
	.68 7.6797	2.32	0.1385					
		2.94	0.0376					
Grand Mean CV(subject_n*Attack_Ty) CV(subject_n*Natence_S) CV(subject_n*Session) CV(subject_n*Attack_Ty*Valence_S) CV(subject_n*Attack_Ty*Valence_S'Session) CV(subject_n*Attack_Ty*Valence_S'Session) CV(subject_n*Attack_Ty*Valence_S'Session)		0.9403 208.14 186.98 241.75 166.21 178.18 193.47						
Greenhouse-Geisser Corrected P-Values for Nonsph	ericity							
Source	F	Minimum Epsilon P	Greenhouse Geisser Epsilon P	Huynh Feldt Epsilon P				
Attack_Ty Attack_Ty*Valence_S Attack_Ty*Session Attack_Ty*Valence_S*Session	0.72 0.59 0.66 2.94	0.4037 0.4475 0.4229 0.0971	0.5229 0.5882 0.5363 M	0.5357 0.6035 0.5482 M				
			**	**				
Source subject_n*Attack_Ty subject_n*Attack_Ty*Valence_S		Minimum Epsilon 0.3333 0.3333	Greenhouse Geisser Epsilon 0.8496 0.8156	Huynh Feldt Epsilon 0.9384 0.8963	Mauchly's Statistic 0.75494 0.72907	Chi Sq 7.79 8.76		P 1680 1190
subject_n*Attack_Ty*Session subject_n*Attack_Ty*Valence_S*Session		0.3333	0.7457 M	0.8110 M	0.45589 M	21.78 M		0006 M

Statistix 10.0	2/25/2014, 5:04	:36 PM						
Repeated Measures AOV Table for DEL_PTT_R								
Source DF SS	MS	F	P					
subject_n (A) 29 193622 Attack_Ty (B) 3 19016	6676.62 6338.70	1.63	0.1891					
Error A*B 87 339050 Valence_S (C) 1 972	3897.12 971.85	0.17	0.6816					
Error A*C 29 164068 Session (D) 1 447	5657.51 446.60	0.08	0.7759					
Error A*D 29 156831 B*C 3 20489	5407.96 6829.79	2.01	0.1186					
Error A*B*C 87 295749 B*D 3 27072	3399.42 9023.92	3.13	0.0299					
Error A*B*D 87 251139 C*D 1 3680	2886.66 3679.67	0.71	0.4071					
Error A*C*D 29 150787 B*C*D 3 12708	5199.57 4236.13	0.96	0.4161					
Error A*B*C*D 87 384514 Total 479 2020144	4419.70							
Grand Mean CV(subject_n*Attack_Ty) CV(subject_n*Attack_Ty) CV(subject_n*Session) CV(subject_n*Attack_Ty*Valence_S) CV(subject_n*Attack_Ty*Session) CV(subject_n*Attack_Ty*Session) CV(subject_n*Attack_Ty*Valence_S*Session) CV(subject_n*Attack_Ty*Valence_S*Session)		-16.106 -387.59 -467.00 -456.59 -362.00 -333.58 -447.70						
Greenhouse-Geisser Corrected P-Values for Nonspheric	ity		Greenhouse	Huynh				
		Minimum Epsilon	Geisser Epsilon	Feldt Epsilon				
Source Attack_Ty* Attack_Ty*Valence_S Attack_Ty*Session Attack_Ty*Valence_S*Session	F 1.63 2.01 3.13 0.96	P 0.2123 0.1670 0.0876 0.3357	P 0.1935 0.1290 0.0362 M	P 0.1891 0.1224 0.0310 M				
Sphericity Assumption Tests								
Source subject_n*Attack_Ty subject_n*Attack_Ty*Valence_S subject_n*Attack_Ty*Session subject_n*Attack_Ty*Valence_S*Session		Minimum Epsilon 0.3333 0.3333 0.3333 0.3333	Greenhouse Geisser Epsilon 0.9135 0.8545 0.8814	Huynh Feldt Epsilon 1.0000 0.9445 0.9780 M	Mauchly's Statistic 0.86255 0.77795 0.79796 M	Chi Sq 4.10 6.96 6.26	DF 5 5 5 5	P 0.5352 0.2236 0.2820 M
	\\\\\\							
tatistix 10.0	2/25/2014, 5:06:	55 PM						
Repeated Measures AOV Table for DEL_HR_R								
Source DF SS subject n (A) 29 18134.0	MS 625.310	F	P					
Attack_Ty (B) 3 35.4 Error A*B 87 5641.6	11.810 64.846	0.18	0.9083					
Valence_S (C) 1 382.9	382.912	6.82	0.0141					
Error A*C 29 1627.2 Session (D) 1 403.0 Error A*D 29 2039.5	56.110 402.952 70.327	5.73	0.0234					
B*C 3 122.3	40.782 55.668	0.73	0.5353					
Error A*B*C 87 4843.1 B*D 3 49.5 Error A*B*D 87 5857.4	16.500 67.326	0.25	0.8646					
C*D 1 59.4	59.354 129.210	0.46	0.5033					
Error A*C*D 29 3747.1 B*C*D 3 348.3 Error A*B*C*D 87 4686.4 Total 479 47977.0	116.097 53.866	2.16	0.0991					
Grand Mean CV(subject_n*Attack_Ty) CV(subject_n*Valence_S)		7.2126 111.65 103.85						

CV(subject_n*Session) CV(subject_n*Attack_Ty*Valen CV(subject_n*Attack_Ty*Sessi CV(subject_n*Valence_S*Sessi CV(subject_n*Attack_Ty*Valen	on) on))		116.27 103.45 113.76 157.60 101.76						
Greenhouse-Geisser Corrected	P-Values for	r Nonsphericity			Greenhouse	Huynh				
Source Attack_Ty Attack_Ty*Valence_S Attack_Ty*Session Attack_Ty*Session			F 0.18 0.73 0.25 2.16	Minimum Epsilon p 0.6727 0.3991 0.6243 0.1528	Geisser Epsilon P 0.8898 0.5236 0.8468	Feldt Epsilon P 0.9072 0.5353 0.8646				
Sphericity Assumption Tests										
Source subject_n*Attack_Ty subject_n*Attack_Ty*Valence_ subject_n*Attack_Ty*Valence_ subject_n*Attack_Ty*Valence_				Minimum Epsilon 0.3333 0.3333 0.3333 0.3333	Greenhouse Geisser Epsilon 0.8937 0.9097 0.9090	Huynh Feldt Epsilon 0.9934 1.0000 1.0000	Mauchly's Statistic 0.84838 0.86931 0.86631 M	Chi Sq 4.56 3.88 3.98 M	DF 5 5 5 5	P 0.4721 0.5664 0.5525 M
//////////////////////////////////////	////		2/26/2014, 2:29:0	is DM						
			2/20/2014, 2:25:0	O PH						
Repeated Measures AOV Table										
Source subject_n (A) Attack_Ty (B) Error A*B Valence_S (C) Error A*C Session (D) Error A*B*C B*D Error A*B*C B*D Error A*C*D Error A*C*D Error A*C*D Error A*C*D B*C Error A*C*D B*C Error A*B*C B*D C*D Error A*B*C*D Total Grand Mean CV(subject_n*Attack_Ty) CV(subject_n*Pattack_Ty*Sessi CV(subject_n*Attack_Ty*Sessi CV(subject_n*Attack_Ty*Sessi CV(subject_n*Attack_Ty*Sessi CV(subject_n*Attack_Ty*Sessi CV(subject_n*Attack_Ty*Sessi CV(subject_n*Attack_Ty*Sessi CV(subject_n*Attack_Ty*Sessi CV(subject_n*Attack_Ty*Sessi CV(subject_n*Attack_Ty*Sessi CV(subject_n*Attack_Ty*Valen Greenhouse-Geisser Corrected	on) on) ce_S*Session;		MS 153.413 10.840 49.263 0.524 19.850 9.973 86.674 41.909 56.205 11.123 37.056 0.010 92.146 2.227 39.867	0.22 0.03 0.12 0.75 0.30 0.00 0.06 1.3461 521.42 330.99 691.63 556.95 452.23 713.13	0.8822 0.8721 0.7369 0.5278 0.8252 0.9919					
Source Attack_Ty*Atlence_S Attack_Ty*Session Attack_Ty*Session Attack_Ty*Olence_S*Session	P-Values for	r Nonsphericity	F 0.22 0.75 0.30 0.06	Minimum Epsilon P 0.6425 0.3949 0.5880 0.8148	Greenhouse Geisser Epsilon P 0.8467 0.5001 0.7783	Huynh Feldt Epsilon P 0.8649 0.5111 0.7970 M				
Sphericity Assumption Tests										
Source subject_n*Attack_Ty				Minimum Epsilon 0.3333	Greenhouse Geisser Epsilon 0.8249	Huynh Feldt Epsilon 0.9078	Mauchly's Statistic 0.72957	Chi Sq 8.74	DF 5	P 0.1199

Repeated Measures AOV Table for DEL_EDA_T							
Source DF SS MS subject_n (A) 29 113.494 3.91358	F	P					
Subject_n (A) 29 113.494 3.91356 Attack_Ty (B) 3 4.207 1.40240 Error A*B 87 52.819 0.60711	2.31	0.0819					
Valence_S (C) 1 0.767 0.76741	1.65	0.2090					
Error A*C 29 13.481 0.46485 Session (D) 1 1.304 1.30388	1.16	0.2896					
Error A*D 29 32.498 1.12061 B*C 3 0.183 0.06085	0.11	0.9562					
Error A*B*C 87 49.767 0.57203 B*D 3 0.814 0.27148	0.45	0.7190					
Error A*B*D 87 52.655 0.60523 C*D 1 0.123 0.12332	0.18	0.6713					
Error A*C*D 29 19.462 0.67112 B*C*D 3 0.659 0.21975	0.55	0.6526					
Error A*B*C*D 87 35.058 0.40297 Total 479 377.292							
Grand Mean CV(subject_n*Attack_Ty) CV(subject_n*Valence_S) CV(subject_n*Session) CV(subject_n*Attack_Ty*Valence_S) CV(subject_n*Attack_Ty*Session) CV(subject_n*Attack_Ty*Session) CV(subject_n*Attack_Ty*Session) CV(subject_n*Attack_Ty*Valence_S*Session) CV(subject_n*Attack_Ty*Valence_S*Session)	-0.4695 -165.96 -145.22 -225.47 -161.09 -165.70 -174.49 -135.21						
Greenhouse-Geisser Corrected P-Values for Nonsphericity	G	reenhouse	Huynh				
	nimum silon P	Geisser Epsilon	Feldt Epsilon P				
Attack_Ty 2.31 0.	.1394	0.0890 0.8777	0.0819 0.8887				
Attack_Ty*Session 0.45 0.	.5083	0.6799 M	0.6981 M				
Sphericity Assumption Tests	. 1002	М	21				
Source subject_n*Attack_Ty subject_n*Attack_Ty*Valence_S subject_n*Attack_Ty*Session subject_n*Attack_Ty*Session	Minimum Epsilon 0.3333 0.3333 0.3333	Greenhouse Geisser Epsilon 0.9013 0.5925 0.8161	Huynh Feldt Epsilon 1.0000 0.6285 0.8970	Mauchly's Statistic 0.83968 0.37011 0.73175 M	Chi Sq 4.84 27.55 8.66 M	DF 5 5 5 5	P 0.4352 0.0000 0.1235 M

atistix 10.0 2/26/2014, 2:37:19 PM

Repeated Measures AOV Table for	or DEL_PTT_T	:								
Source	DF	ss	MS	F	P					
subject_n (A)	29	382590 32727	13192.8	0.07	0.4004					
Attack_Ty (B) Error A*B	3 87	973517	10909.1 11189.8	0.97	0.4084					
Valence_S (C)	1	3413	3413.3	0.59	0.4480					
Error A*C Session (D)	29 1	167329 15732	5770.0 15732.3	2.49	0.1257					
Error A*D	29	183497	6327.5							
B*C Error A*B*C	3 87	12122 773450	4040.8 8890.2	0.45	0.7148					
B*D	3	39970	13323.5	2.43	0.0707					
Error A*B*D C*D	87 1	477296 3853	5486.2 3853.3	0.38	0.5406					
Error A*C*D	29	291479	10051.0							
B*C*D Error A*B*C*D	3 87	13024 816608	4341.2 9386.3	0.46	0.7092					
Total	479	4186607								
Grand Mean CV(subject_n*Attack_Ty) CV(subject_n*Valence_S) CV(subject_n*Session) CV(subject_n*Attack_Ty*Valenc CV(subject_n*Attack_Ty*Session CV(subject_n*Valence_S*Session CV(subject_n*Valence_S*Valenc CV(subject_n*Attack_Ty*Valenc	1) 1)			-6.29 -1681 -1207. -1264. -1498. -1177. -1593.	30 32 30 62 25 45					
Greenhouse-Geisser Corrected	-Values for	Nonsphericity								
				Minimum	Greenhouse Geisser	Huynh Feldt				
				Epsilon	Epsilon	Epsilon				
Source Attack_Ty			F 0.97	P 0.3316	P 0.3542	P 0.3565				
Attack_Ty*Valence_S			0.45 2.43	0.5055 0.1300	0.5957 0.1125	0.6050 0.1102				
Attack_Ty*Session Attack_Ty*Valence_S*Session			0.46	0.5018	0.1125 M	0.1102 M				
Sphericity Assumption Tests										
sphericity Assumption Tests					Greenhouse	Huynh				
Source subject_n*Attack_Ty subject_n*Attack_Ty*Valence_S subject_n*Attack_Ty*Session subject_n*Attack_Ty*Valence_S	*Session			Minimum Epsilon 0.3333 0.3333 0.3333	Geisser Epsilon 0.4433 0.5375 0.5072	Feldt Epsilon 0.4565 0.5644 0.5295 M	Mauchly's Statistic 0.10432 0.24196 0.17150	Chi Sq 62.66 39.34 48.88	DF 5 5 5 5	P 0.0000 0.0000 0.0000 M
	50551011		0/05/0014 0:35:10			**			-	**
atistix 10.0			2/26/2014, 2:37:19	PM						
Repeated Measures AOV Table for	or DEL_PTT_T	!								
Source subject_n (A)	DF 29	ss 382590	MS 13192.8	F	P					
Attack_Ty (B)	3	32727	10909.1	0.97	0.4084					
Error A*B Valence_S (C)	87 1	973517 3413	11189.8 3413.3	0.59	0.4480					
Error A*C	29	167329	5770.0							
Session (D) Error A*D	1 29	15732 183497	15732.3 6327.5	2.49	0.1257					
B*C	3	12122	4040.8	0.45	0.7148					
Error A*B*C B*D	87 3	773450 39970	8890.2 13323.5	2.43	0.0707					
Error A*B*D	87	477296	5486.2							
C*D Error A*C*D	1 29	3853 291479	3853.3 10051.0	0.38	0.5406					
B*C*D	3	13024	4341.2	0.46	0.7092					
Error A*B*C*D Total	87 479	816608 4186607	9386.3							
	475	4100007								
Grand Mean CV(subject_n*Attack_Ty) CV(subject_n*Valence_S) CV(subject_n*Session) CV(subject_n*Attack_Ty*Valenc CV(subject_n*Attack_Ty*Sessio. CV(subject_n*Valence_S*Sessio. CV(subject_n*Valence_S*Dessio.	1)			-6.29 -1681. -1207. -1264. -1498. -1177. -1593.	30 32 30 62 25 45					
Greenhouse-Geisser Corrected		Nonsphericity			Greenhouse	Huynh				

Source Attack_Ty Attack_Ty*Valence_S Attack_Ty*Session Attack_Ty*Valence_S*Session Sphericity Assumption Tests Source subject_n*Attack_Ty subject_n*Attack_Ty*Valence_S subject_n*Attack_Ty*Valence_S* subject_n*Attack_Ty*Valence_S*	Session		F 0.97 0.45 2.43 0.46	Epsilon P 0.3316 0.5055 0.1300 0.5018 Minimum Epsilon 0.3333 0.3333 0.3333 0.3333	Epsilon p 0.3542 0.5957 0.1125 M Greenhouse Geisser Epsilon 0.4433 0.5375 0.5072 M	Epsilon p 0.3565 0.6050 0.1102 M Huynh Feldt Epsilon 0.4565 0.5644 0.5295	Mauchly's Statistic 0.10432 0.24196 0.17150 M	Chi Sq 62.66 39.34 48.88 M	DF 5 5 5 5	0.0000 0.0000 0.0000 0.0000
	······									
Statistix 10.0			2/26/2014, 2:45	:34 PM						
Repeated Measures AOV Table fo	r TLX_Perf	!								
Source subject_n (A) Attack_Ty (B) Error A*B Valence_S (C) Error A*C Session (D) Error A*B B*C Error A*B*C B*D Error A*B*D C*D Error A*C*D B*C*D Error A*C*D B*C*D Error A*B*C C*D C*D Error A*B*C B*O C*O Error A*B*C*D C*O Error A*C*D B*C*D Error A*C*D B*C*D Error A*B*C*D Total Grand Mean CV(subject_n*Attack_Ty) CV(subject_n*Session) CV(subject_n*Attack_Ty*Session)	85 8.7268 3.7941 4.6676 0.0050 0.9252 0.4290 1.0799 0.0413 2.7654 0.0352 2.6352 0.0023 1.3754 0.1249 1.8793 2.8.4866	MS 0.30092 1.26470 0.05365 0.00501 0.03190 0.42901 0.03724 0.01377 0.03179 0.01174 0.03029 0.00230 0.04743 0.04164 0.02160	23.57 0.16 11.52 0.43 0.39 0.05 1.93 0.5320 43.54 33.57 36.27 33.51 32.72	0.0000 0.6949 0.0020 0.7298 0.7622 0.8274					
CV(subject_n*Attack_Ty*Valence		1)		27.63						
Greenhouse-Geisser Corrected P Source Attack_Ty Attack_Ty*Valence_S Attack_Ty*Session Attack_Ty*Session	-Values fo	r Nonsphericity	F 23.57 0.43 0.39 1.93	Minimum Epsilon P 0.0000 0.5156 0.5384 0.1756	Greenhouse Geisser Epsilon P 0.0000 0.7102 0.7376 M	Huynh Feldt Epsilon P 0.0000 0.7298 0.7583 M				
Sphericity Assumption Tests Source subject_n*Attack_Ty subject_n*Attack_Ty*Valence_S subject_n*Attack_Ty*Session subject_n*Attack_Ty*Valence_S*	Session			Minimum Epsilon 0.3333 0.3333 0.3333	Greenhouse Geisser Epsilon 0.6547 0.9039 0.8834 M	Huynh Feldt Epsilon 0.7018 1.0000 0.9804	Mauchly's Statistic 0.38306 0.81604 0.81968 M	Chi Sq 26.60 5.64 5.51 M	DF 5 5 5 5	P 0.0001 0.3433 0.3566 M
Repeated Measures AOV Table fo	r TLX_Eff									
Source subject_n (A) Attack_Ty (B) Error A*B	DF 29 3	ss 12.7505 0.5913 2.1641	MS 0.43967 0.19712 0.02487	F 7.92	P 0.0001					

Valence_S (C) Error A*C Session (D) Error A*D B*C Error A*B*C B*D Error A*B*D C*D Error A*C*D B*C*D Error A*C*D B*C*D Toror A*B*C*D Total	1 29 1 29 3 87 3 87 1 29 3 87	0.0135 0.3922 0.5638 2.0708 0.0193 1.3967 0.0120 1.6079 0.0158 0.5207 0.0515 1.2290 23.3991	0.01355 0.01353 0.56376 0.07141 0.00645 0.01605 0.00399 0.01848 0.01576 0.01795 0.01716	1.00 7.90 0.40 0.22 0.88 1.21	0.3252 0.0088 0.7521 0.8851 0.3566 0.3093					
Grand Mean CV(subject_n*Attack_Ty) CV(subject_n*Valence_S) CV(subject_n*Session) CV(subject_n*Attack_Ty*Valen CV(subject_n*Attack_Ty*Sessi CV(subject_n*Valence_S*Sessi CV(subject_n*Attack_Ty*Valen Cresheve_Colorn*Corrected	ion) ion) nce_S*Sessio			0.5930 26.60 19.61 45.06 21.37 22.92 22.59 20.04						
Greenhouse-Geisser Corrected Source Attack_Ty Attack_Ty*Valence_S Attack_Ty*Session	r-values I	or Nonsphericity	F 7.92 0.40 0.22	Minimum Epsilon P 0.0087 0.5312 0.6456	Greenhouse Geisser Epsilon P 0.0007 0.7054 0.7916	Huynh Feldt Epsilon P 0.0005 0.7236 0.8055				
Attack_Ty*Session Attack_Ty*Valence_S*Session Sphericity Assumption Tests			1.21	0.2795	М	М				
Source subject_n*Attack_Ty subject_n*Attack_Ty*Valence_ subject_n*Attack_Ty*Valence_				Minimum Epsilon 0.3333 0.3333 0.3333	Greenhouse Geisser Epsilon 0.7102 0.7907 0.6226 M	Huynh Feldt Epsilon 0.7681 0.8658 0.6638	Mauchly's Statistic 0.43640 0.63894 0.31105 M	Chi Sq 22.99 12.42 32.37 M	DF 5 5 5	P 0.0003 0.0295 0.0000 M
Repeated Measures AOV Table	for TLX_Fru	s								
Source subject_n (A) Attack_Ty (B) Error A*B Valence_S (C) Error A*C	DF 29 3 87 1 29	\$\$ 18.1495 3.3848 2.8101 0.0949 0.9184	MS 0.62584 1.12826 0.03230 0.09492 0.03167	F 34.93 3.00	P 0.0000 0.0940					
Session (D) Error A*D B*C	1 29 3	0.1317 2.4004 0.0686	0.13167 0.08277 0.02285	1.59	0.2173 0.3165					
Error A*B*C B*D	87 3	1.6638 0.0278	0.01912 0.00927	0.46	0.7123					
Error A*B*D C*D Error A*C*D	87 1 29	1.7608 0.0135 1.1597	0.02024 0.01355 0.03999	0.34	0.5650					
B*C*D Error A*B*C*D Total	3 87 479	0.0118 2.2705 34.8662	0.03999 0.00395 0.02610	0.15	0.9286					
Grand Mean CV(subject_n*Attack_Ty) CV(subject_n*Valence_S) CV(subject_n*Session) CV(subject_n*Attack_Ty*Valen CV(subject_n*Attack_Ty*Sessi CV(subject_n*Attack_Ty*Valen CV(subject_n*Attack_Ty*Valen CV(subject_n*Attack_Ty*Valen CV(subject_n*Attack_Ty*Valen	ion) ion)	n)		0.5122 35.09 34.74 56.17 27.00 27.78 39.04 31.54						
Greenhouse-Geisser Corrected	l P-Values f	or Nonsphericity			Greenhouse	Huynh				
Source			F	Minimum Epsilon P	Geisser Epsilon P	Feldt Epsilon P				
Attack_Ty Attack_Ty*Valence_S Attack_Ty*Session Attack_Ty*Valence_S*Session			34.93 1.19 0.46 0.15	0.0000 0.2833 0.5039 0.7001	0.0000 0.3162 0.6849 M	0.0000 0.3165 0.7043 M				

Sphericity Assumption Tests

Source subject_n*Attack_Ty subject_n*Attack_Ty*Valence_S subject_n*Attack_Ty*Valence_S subject_n*Attack_Ty*Valence_S*Sess	ion		Minimum Epsilon 0.3333 0.3333 0.3333 0.3333	Greenhouse Geisser Epsilon 0.7385 0.9636 0.8657 M	Huynh Feldt Epsilon 0.8023 1.0000 0.9584 M	Mauchly's Statistic 0.56205 0.94467 0.76468 M	Chi sq 15.97 1.58 7.44 M	DF 5 5 5 5	P 0.0069 0.9039 0.1901 M
Statistix 10.0		2/26/2014, 3:01:5	4 PM						
Repeated Measures AOV Table for TL	X_TD								
Source D	F SS	MS	F	P					
subject_n (A) 2 Attack_Ty (B)	9 11.8324 3 0.9305	0.40801 0.31017	15.00	0.0000					
Error A*B 8		0.02068 0.05963	2.62	0.1165					
Error A*C 2	9 0.6605	0.02278							
Error A*D 2		0.34401 0.06185	5.56	0.0253					
B*C Error A*B*C 8	3 0.1348 7 1.0406	0.04495 0.01196	3.76	0.0137					
B*D Error A*B*D 8		0.01560 0.01254	1.24	0.2988					
C*D	1 0.0050	0.00501	0.36	0.5544					
	3 0.0229 7 0.9970	0.01399 0.00763 0.01146	0.67	0.5753					
Grand Mean CV(subject_n*Attack_Ty) CV(subject_n*Valence_S) CV(subject_n*Session) CV(subject_n*Attack_Ty*Valence_S) CV(subject_n*Attack_Ty*Session) CV(subject_n*Valence_S*Session) CV(subject_n*Valence_S*Valence_S*S			0.5430 26.48 27.79 45.80 20.14 20.62 21.78 19.71						
Greenhouse-Geisser Corrected P-Val	ues for Nonsphericity	,							
Source_		F	Minimum Epsilon P	Greenhouse Geisser Epsilon P	Huynh Feldt Epsilon P				
Attack_Ty Attack_Ty*Valence_S Attack_Ty*Session Attack_Ty*Valence_S*Session		15.00 3.76 1.24 0.67	0.0006 0.0623 0.2739 0.4212	0.0000 0.0206 0.2976 M	0.0000 0.0171 0.2983 M				
Sphericity Assumption Tests									
Source subject_n*Attack_Ty subject_n*Attack_Ty*Valence_S subject_n*Attack_Ty*Session subject_n*Attack_Ty*Session	ion		Minimum Epsilon 0.3333 0.3333 0.3333	Greenhouse Geisser Epsilon 0.8257 0.8198 0.7615	Huynh Feldt Epsilon 0.9088 0.9015 0.8301 M	Mauchly's Statistic 0.74963 0.73935 0.64024 M	Chi sq 7.99 8.37 12.36 M	DF 5 5 5 5	P 0.1569 0.1369 0.0302 M

Statistiv 10 0	2/26/2014	3:02:56 PM

Repeated Measures AOV Table for TLX_PI	Repeated	Measures	AOV	Table	for	TLX_PD
--	----------	----------	-----	-------	-----	--------

Source	DF	ss	MS	F	P
subject n (A)	29	16.4948	0.56879		
Attack Ty (B)	3	0.4057	0.13523	6.93	0.0003
Error A*B	87	1.6970	0.01951		
Valence_S (C)	1	0.0004	0.00042	0.02	0.8916
Error A*C	29	0.6469	0.02231		
Session (D)	1	0.0490	0.04901	0.98	0.3313
Error A*D	29	1.4558	0.05020		
B*C	3	0.0252	0.00839	0.67	0.5753
Error A*B*C	87	1.0968	0.01261		
B*D	3	0.0268	0.00892	1.07	0.3645
Error A*B*D	87	0.7228	0.00831		
C*D	1	0.0105	0.01055	0.51	0.4823
Error A*C*D	29	0.6037	0.02082		
B*C*D	3	0.0264	0.00880	0.69	0.5576
Error A*B*C*D	87	1.1013	0.01266		
Total	479	24.3631			
Grand Mean				0.3691	
CV(subject_n*Attack_Ty)				37.84	
CV(subject_n*Valence_S)				40.47	
CV(subject_n*Session)				60.71	
CV(subject_n*Attack_Ty*Va	lence_S)			30.42	
CV(subject_n*Attack_Ty*Se	ssion)			24.70	
CV(subject_n*Valence_S*Se	ssion)			39.09	
CV(subject_n*Attack_Ty*Va	lence_S*Session	1)		30.49	

Greenhouse-Geisser Corrected P-Values for Nonsphericity

		Minimum Epsilon	Geisser Epsilon	Feldt Epsilon
Source	F	P	P	P
Attack Ty	6.93	0.0134	0.0013	0.0009
Attack Ty*Valence S	0.67	0.4212	0.5486	0.5623
Attack Ty*Session	1.07	0.3086	0.3574	0.3611
Attack Ty*Valence S*Session	0.69	0 4113	M	M

Sphericity Assumption Tests

	Minimum	Geisser	Feldt	Mauchly's			
Source	Epsilon	Epsilon	Epsilon	Statistic	Chi Sq	DF	P
subject_n*Attack_Ty	0.3333	0.7477	0.8135	0.55005	16.57	5	0.0054
subject_n*Attack_Ty*Valence_S	0.3333	0.8292	0.9132	0.75564	7.77	5	0.1695
subject_n*Attack_Ty*Session	0.3333	0.8239	0.9066	0.72111	9.06	5	0.1065
subject n*Attack Ty*Valence S*Session	0.3333	M	M	M	M	5	M

Greenhouse

Greenhouse

Huynh

Huynh

2/26/2014, 3:04:17 PM Statistix 10.0

Repeated Measures AOV Table for TLX_MD

Source	DF	ss	MS	F	P
subject_n (A)	29	15.0392	0.51859		
Attack_Ty (B)	3	0.6401	0.21335	12.97	0.0000
Error A*B	87	1.4313	0.01645		
Valence_S (C)	1	0.0057	0.00567	0.32	0.5758
Error A*C	29	0.5135	0.01771		
Session (D)	1	0.4533	0.45326	6.17	0.0190
Error A*D	29	2.1291	0.07342		
B*C	3	0.1054	0.03514	2.09	0.1072
Error A*B*C	87	1.4622	0.01681		
B*D	3	0.0235	0.00784	0.49	0.6936
Error A*B*D	87	1.4060	0.01616		
C*D	1	0.0004	0.00042	0.02	0.8844
Error A*C*D	29	0.5682	0.01959		
B*C*D	3	0.0484	0.01614	0.89	0.4502

Error A*B*C*D Total	87 479	1.5798 25.4062	0.01816							
Grand Mean CV(subject_n*Attack_Ty) CV(subject_n*Valence_S) CV(subject_n*Session) CV(subject_n*Attack_Ty*Valence CV(subject_n*Attack_Ty*Session) CV(subject_n*Valence_S*Session CV(subject_n*Valence_Ty*Valence	1) 1)			0.5378 23.85 24.74 50.38 24.11 23.64 26.03 25.06						
Greenhouse-Geisser Corrected E	P-Values for	Nonsphericity								
				Minimum Epsilon	Greenhouse Geisser Epsilon	Huynh Feldt Epsilon				
Source			F	P	P	P				
Attack_Ty			12.97	0.0012	0.0000	0.0000				
Attack_Ty*Valence_S Attack Ty*Session			2.09 0.49	0.1589 0.4917	0.1237 0.6438	0.1181 0.6599				
Attack_Ty*Valence_S*Session			0.89	0.3535	M	0.0399 M				
Sphericity Assumption Tests										
Source subject_n*Attack_Ty subject_n*Attack_Ty*Valence_S subject_n*Attack_Ty*Valence_S subject_n*Attack_Ty*Valence_S'	*Session			Minimum Epsilon 0.3333 0.3333 0.3333 0.3333	Greenhouse Geisser Epsilon 0.8934 0.7789 0.7652 M	Huynh Feldt Epsilon 0.9930 0.8514 0.8346 M	Mauchly's Statistic 0.84406 0.62807 0.60670 M	Chi Sq 4.70 12.89 13.85 M	DF 5 5 5 5	P 0.4536 0.0244 0.0166 M
1.										

Statistix 10.0			3/3/2014, 2:40:4	13 PM		
Repeated Measures AOV T	able for pre_Aff	_s				
Source	DF	ss	MS	F	P	
subject_n (A)	29	331.67	11.4369			
Attack_Ty (B)	3	203.01	67.6687	21.66	0.0000	
Error A*B	87	271.81	3.1242			
Valence_S (C)	1	0.02	0.0187	0.00	0.9611	
Error A*C	29	224.42	7.7386			
Session (D)	1	13.67	13.6688	2.29	0.1412	
Error A*D	29	173.27	5.9748			
B*C	3	5.16	1.7187	0.69	0.5624	
Error A*B*C	87	217.66	2.5018			
B*D	3	5.87	1.9576	1.05	0.3753	
Error A*B*D	87	162.44	1.8671			
C*D	1	5.00	5.0021	2.42	0.1306	
Error A*C*D	29	59.94	2.0667			
B*C*D	3	13.21	4.4021	2.77	0.0462	
Error A*B*C*D	87	138.11	1.5874			
Total	479	1825.23				
Grand Mean				5.3812		
CV(subject_n*Attack_Ty)				32.85		
CV(subject_n*Valence_S)				51.69		
CV(subject_n*Session)				45.42		
CV(subject_n*Attack_Ty*	Valence_S)			29.39		
CV(subject_n*Attack_Ty*	Session)			25.39		
CV(subject_n*Valence_S*	Session)			26.72		
CV(subject_n*Attack_Ty*	Valence_S*Sessio	n)		23.41		
Greenhouse-Geisser Corr	ected P-Values f	or Nonsphericity				
					Greenhouse	Huynl
				Minimum Epsilon	Geisser Epsilon	Feldt Epsilor

Source Attack_Ty*Valence_S Attack_Ty*Valence_S Attack_Ty*Session Attack_Ty*Valence_S*Session Sphericity Assumption Tests Source subject_n*Attack_Ty subject_n*Attack_Ty*Valence_S subject_n*Attack_Ty*Session subject_n*Attack_Ty*Valence_S*	Session		F 21.66 0.69 1.05 2.77	P 0.0001 0.4140 0.3143 0.1066 Minimum Epsilon 0.3333 0.3333 0.3333 0.3333	P 0.0000 0.5338 0.3735 M Greenhouse Geisser Epsilon 0.8886 0.8114 0.9538	P 0.0000 0.5466 0.3753 M Huynh Feldt Epsilon 0.9870 0.8912 1.0000	Mauchly's Statistic 0.82980 0.69913 0.93380 M	Chi sq 5.17 9.92 1.90 M	DF 5 5 5 5	P 0.3953 0.0775 0.8630 M
2. Statistix 10.0			3/3/2014, 2:43	:20 pm						
Repeated Measures AOV Table fo	r pre_af-	-01	3,3,2011, 2:13	- 20 211						
Source	DF	ss	MS	F	P					
subject_n (A) Attack_Ty (B)	29	288.50 25.94	9.95 8.65	2.90	0.0394					
Error A*B Valence_S (C)	87 1	259.18 1717.63	2.98 1717.63	154.46	0.0000					
Error A*C Session (D)	29 1	322.49	11.12	0.29	0.5948					
Error A*D B*C	29	30.07 73.22	1.04 24.41	9.51	0.0000					
Error A*B*C B*D	87	223.16 1.72	2.57 0.57	0.49	0.6928					
Error A*B*D C*D	87 1	102.41 0.01	1.18 0.01	0.00	0.9515					
Error A*C*D B*C*D	29	64.12 4.37	2.21 1.46	1.51	0.2175					
Error A*B*C*D Total	87 479	84.00 3197.12	0.97							
Grand Mean CV(subject_n*Attack_Ty) CV(subject_n*Valence_S) CV(subject_n*Session) CV(subject_n*Attack_Ty*Valence CV(subject_n*Attack_Ty*Session CV(subject_n*Attack_Ty*Valence CV(subject_n*Attack_Ty*Valence	1)	on)		4.8125 35.87 69.29 21.16 33.28 22.54 30.90 20.42						
Greenhouse-Geisser Corrected P	-Values f	For Nonsphericity			Greenhouse	Huynh				
Source Attack_Ty Attack_Ty*Valence_S			F 2.90 9.51	Minimum Epsilon P 0.0991 0.0044	Geisser Epsilon P 0.0399 0.0000	Feldt Epsilon P 0.0394 0.0000				
Attack_Ty*Session Attack_Ty*Valence_S*Session			0.49 1.51	0.4912 0.2290	0.6494 M	0.6663 M				
Source subject_n*Attack_Ty subject_n*Attack_Ty*Valence_S subject_n*Attack_Ty*Session subject_n*Attack_Ty*Valence_S*	Session			Minimum Epsilon 0.3333 0.3333 0.3333	Greenhouse Geisser Epsilon 0.9908 0.9017 0.7918 M	Huynh Feldt Epsilon 1.0000 1.0000 0.8671 M	Mauchly's Statistic 0.98580 0.83757 0.66545	Chi Sq 0.40 4.91 11.29 M	DF 5 5 5 5	P 0.9954 0.4265 0.0459 M

3

Statistix 10.0 3/3/2014, 2:45:34 PM

Repeated Measures AOV Table f				_	_					
Source subject_n (A)	DF 29	ss 532.31	MS 18.3555	F	P					
Attack_Ty (B) Error A*B	3 87	30.17 203.51	10.0576 2.3392	4.30	0.0071					
Valence_S (C) Error A*C	1 29	2.55 74.76	2.5521 2.5779	0.99	0.3280					
Session (D) Error A*D	1 29	2.55 112.01	2.5521 3.8624	0.66	0.4229					
B*C Error A*B*C	3 87	5.57 108.86	1.8576 1.2513	1.48	0.2244					
B*D Error A*B*D	3 87	1.51 132.68	0.5021 1.5251	0.33	0.8042					
C*D Error A*C*D	1 29	0.10 36.71	0.1021 1.2659	0.08	0.7784					
B*C*D Error A*B*C*D	3 87	5.76 126.18	1.9188 1.4504	1.32	0.2721					
Total	479	1375.25	1.4504							
Grand Mean CV(subject_n*Attack_Ty) CV(subject_n*Valence_S) CV(subject_n*Session) CV(subject_n*Attack_Ty*Valenc CV(subject_n*Attack_Ty*Sessio CV(subject_n*Valence_S*Sessio CV(subject_n*Valence_S*Jessio CV(subject_n*Valence_S*Jessio	n) n)	1)		5.7271 26.71 28.04 34.32 19.53 21.56 19.65 21.03						
Greenhouse-Geisser Corrected	P-Values fo	or Nonsphericity			Greenhouse	Huynh				
				Minimum Epsilon	Geisser Epsilon	Feldt Epsilon				
Source Attack_Ty			F 4.30	P 0.0471	P 0.0111	P 0.0087				
Attack_Ty*Valence_S Attack_Ty*Session			1.48	0.2329 0.5705	0.2309 0.7841	0.2282 0.8042				
Attack_Ty*Valence_S*Session			1.32	0.2595	М	М				
Sphericity Assumption Tests					Greenhouse	Huynh				
Source subject_n*Attack_Ty subject_n*Attack_Ty*Valence_S subject_n*Attack_Ty*Session subject_n*Attack_Ty*Valence_S				Minimum Epsilon 0.3333 0.3333 0.3333	Geisser Epsilon 0.8385 0.8144 0.9039	Feldt Epsilon 0.9247 0.8949 1.0000	Mauchly's Statistic 0.73180 0.70484 0.85458 M	Chi Sq 8.66 9.70 4.36 M	DF 5 5 5 5	P 0.1236 0.0843 0.4993 M
4.										
Statistix 10.0			3/3/2014, 2:46	5:46 PM						
Repeated Measures AOV Table f	or post_A~0	01								
Source subject_n (A)	DF 29	ss 373.22	MS 12.870	F	P					
Attack_Ty (B) Error A*B	3 87	306.38 305.50	102.125 3.511	29.08	0.0000					
Valence_S (C) Error A*C	1 29	23.41 56.72	23.408 1.956	11.97	0.0017					
Session (D) Error A*D	1 29	7.50 101.87	7.500 3.513	2.13	0.1547					
B*C Error A*B*C	3 87	5.47 215.90	1.825 2.482	0.74	0.5337					
B*D Error A*B*D	3 87	3.65 155.48	1.217	0.68	0.5661					
C*D Error A*C*D	1 29	2.13 45.24	2.133 1.560	1.37	0.2518					
B*C*D B*C*D Error A*B*C*D Total	3 87 479	6.98 214.14 1823.59	2.328 2.461	0.95	0.4222					
Grand Mean CV(subject_n*Attack_Ty) CV(subject_n*Valence_S) CV(subject_n*Session) CV(subject_n*Attack_Ty*Valenc	(2 S)			4.9292 38.02 28.37 38.02 31.96						
c. (bubjecc_i Accack_iy Valenc				31.90	110					

CV(subject_n*Attack_Ty*Session CV(subject_n*Valence_S*Session CV(subject_n*Attack_Ty*Valence))		27.12 25.34 31.83						
Greenhouse-Geisser Corrected P	-Values for	r Nonsphericity			Greenhouse	Huynh				
Source Attack_Ty Attack_Ty*Valence_S Attack_Ty*Session Attack_Ty*Valence_S*Session			F 29.08 0.74 0.68 0.95	Minimum Epsilon p 0.0000 0.3982 0.4160 0.3389	Geisser Geisser Epsilon P 0.0000 0.5252 0.5431 M	Feldt Epsilon P 0.0000 0.5337 0.5568				
Sphericity Assumption Tests					Greenhouse	Huynh				
Source subject_n*Attack_Ty subject_n*Attack_Ty*Valence_S subject_n*Attack_Ty*Valence_S*	Session			Minimum Epsilon 0.3333 0.3333 0.3333 0.3333	Geisser Epsilon 0.7580 0.9336 0.8471 M	Feldt Epsilon 0.8259 1.0000 0.9353 M	Mauchly's Statistic 0.64635 0.90082 0.75388 M	Chi Sq 12.10 2.90 7.83 M	DF 5 5 5 5	0.0335 0.7161 0.1657 M
5.										
Statistix 10.0			3/3/2014, 2:48:0	08 PM						
Repeated Measures AOV Table fo	r pre_Aff_	g								
Source subject_n (A) Attack_Ty (B) Error A*B Valence_S (C) Error A*C Session (D) Error A*B*C B*C Error A*B*D C*D Error A*C*D B*C*D Error A*C*D B*C*D C*D C*D C*T C*D C*T C*S)	\$\$ 591.62 291.87 366.00 0.53 332.84 49.41 233.47 9.52 443.61 5.71 216.92 6.53 72.59 10.55 200.82 2831.99	MS 20.4006 97.2917 4.2069 0.5333 11.4773 49.4083 8.0506 3.1722 5.0989 1.9028 2.4933 6.5333 2.5032 3.5167 2.3083	23.13 0.05 6.14 0.62 0.76 2.61 1.52 5.6708 36.17 59.74 50.03 39.82 27.84 27.90	0.0000 0.8308 0.0193 0.6026 0.5178 0.1170					
CV(subject_n*Attack_Ty*Valence Greenhouse-Geisser Corrected P				26.79						
Source Attack_Ty*Valence_S Attack_Ty*Session Attack_Ty*Valence_S*Session	Tartes 10.	- Nonspires Folly	F 23.13 0.62 0.76 1.52	Minimum Epsilon p 0.0000 0.4367 0.3895 0.2270	Greenhouse Geisser Epsilon P 0.0000 0.5752 0.5114	Huynh Feldt Epsilon P 0.0000 0.5902 0.5178 M				
Sphericity Assumption Tests										
Source subject_n*Attack_Ty subject_n*Attack_Ty*Valence_S subject_n*Attack_Ty*Session subject_n*Attack_Ty*Valence_S*	Session			Minimum Epsilon 0.3333 0.3333 0.3333	Greenhouse Geisser Epsilon 0.8770 0.8375 0.9462 M	Huynh Feldt Epsilon 0.9724 0.9234 1.0000	Mauchly's Statistic 0.79326 0.71111 0.90962	Chi Sq 6.42 9.45 2.63 M	DF 5 5 5 5	P 0.2674 0.0924 0.7574 M

6.										
Statistix 10.0			3/3/2014, 2:52:	43 PM						
Repeated Measures AOV Tabl	e for pre_Af~(02								
Source	DF	ss	MS	F	P					
subject_n (A)	29	290.46	10.02							
Attack_Ty (B)	3 87	45.32 258.11	15.11 2.97	5.09	0.0027					
Error A*B Valence S (C)	1	2674.35	2674.35	209.35	0.0000					
Error A*C	29	370.46	12.77	205.55	0.0000					
Session (D)	1	2.85	2.85	2.81	0.1046					
Error A*D	29	29.46	1.02							
B*C	3	95.16	31.72	12.61	0.0000					
Error A*B*C	87	218.78	2.51							
B*D Error A*B*D	3 87	1.92 99.51	0.64	0.56	0.6426					
C*D	1	0.05	1.14	0.03	0.8649					
Error A*C*D	29	51.26	1.77	0.03	0.0045					
B*C*D	3	0.99	0.33	0.39	0.7637					
Error A*B*C*D	87	74.45	0.86							
Total	479	4213.15								
Grand Mean CV(subject_n*Attack_Ty) CV(subject_n*Valence_S) CV(subject_n*Session) CV(subject_n*Attack_Ty*Val CV(subject_n*Attack_Ty*Ses CV(subject_n*Attack_Ty*Ses CV(subject_n*Valence_S*Ses CV(subject_n*Attack_Ty*Val	sion) sion) ence_S*Session			4.7771 36.06 74.82 21.10 33.20 22.39 27.83 19.36						
Greenhouse-Geisser Correct	ed P-Values fo	or Nonsphericity			Greenhouse	Huynh				
Source Attack_Ty Attack_Ty*Valence_S Attack_Ty*Session Attack_Ty*Valence_S*Session	n		F 5.09 12.61 0.56 0.39	Minimum Epsilon P 0.0317 0.0013 0.4601 0.5395	Geisser Epsilon P 0.0043 0.0000 0.6133	Feldt Epsilon P 0.0030 0.0000 0.6299				
Sphericity Assumption Test	s									
Source subject_n*Attack_Ty subject_n*Attack_Ty*Valenc subject_n*Attack_Ty*Sessio subject_n*Attack_Ty*Valenc	n			Minimum Epsilon 0.3333 0.3333 0.3333 0.3333	Greenhouse Geisser Epsilon 0.8752 0.8116 0.8415	Huynh Feldt Epsilon 0.9703 0.8915 0.9284 M	Mauchly's Statistic 0.76575 0.69932 0.67676 M	Chi Sq 7.40 9.91 10.82 M	DF 5 5 5 5	P 0.1926 0.0777 0.0550 M

7.

Statistix 10.0 3/3/2014, 2:54:49 PM

Repeated Measures AOV Table for post_A~02

Source subject_n (A) Attack_Ty (B) F 1101.34 40.07 37.9771 0.0003 Error A*B Valence_S (C) Error A*C Session (D) 169.49 0.25 82.94 18.02 0.2521 2.8598 18.0187 0.09 0.7687 3.87 0.0587 Error A*D 5.77 163.79 1.9243 1.02 0.3869 Error A*B*C B*D 1.8826 0.42 0.7422 Error A*B*D 2.1169 Error A*C*D B*C*D Error A*B*C*D 1.9029 4.04 166.27 1.3465 0.70 0.5519

Grand Mean CV(subject_n*Attack_Ty) CV(subject_n*Valence_S) CV(subject_n*Session) CV(subject_n*Attack_Ty*Vale CV(subject_n*Attack_Ty*Sesi CV(subject_n*Valence_s*Sesi CV(subject_n*Attack_Ty*Vale	sion) sion)	1)		5.8896 23.70 28.71 36.62 23.30 24.70 23.42 23.47						
Greenhouse-Geisser Correcte	ed P-Values fo	or Nonsphericity			Greenhouse	Huynh				
Source Attack_Ty Attack_Ty*Valence_S Attack_Ty*Session			F 6.86 1.02 0.42	Minimum Epsilon P 0.0139 0.3204 0.5242	Geisser Epsilon P 0.0010 0.3749 0.7048	Feldt Epsilon P 0.0006 0.3794 0.7238				
Attack_Ty*Valence_S*Session	n		0.70	0.4081	M	M				
Sphericity Assumption Test	s			Minimum	Greenhouse Geisser	Huynh Feldt	Mauchly's			
Source subject_n*Attack_Ty subject_n*Attack_Ty*Valence subject_n*Attack_Ty*Session subject_n*Attack_Ty*Valence	n			Epsilon 0.3333 0.3333 0.3333 0.3333	Epsilon 0.8044 0.7815 0.8268 M	Epsilon 0.8826 0.8546 0.9102 M	Statistic 0.70176 0.68303 0.74516 M	Chi Sq 9.82 10.57 8.15 M	DF 5 5 5 5	0.0806 0.0606 0.1479 M
8.										
Statistix 10.0			3/3/2014, 2:56	:09 PM						
Repeated Measures AOV Table	e for post_A~0	13								
Source subject_n (A) Attack_Ty (B) Error A*B Valence_S (C) Error A*C Session (D) Error A*D B*C Error A*B*C B*D Error A*B*C C*D Error A*C*D B*C*D Error A*B*C*D C*D C*T	DF 29 3 87 1 29 1 29 3 87 7 1 29 3 87 479	ss 609.24 431.54 402.71 21.67 61.82 10.21 111.29 4.17 244.82 1.64 233.36 1.88 58.37 11.01 253.24 2456.99	MS 21.008 143.847 4.629 21.675 2.132 10.208 3.838 1.392 2.814 0.547 2.682 1.875 2.013 3.669 2.911	\$\mathbf{F}\$ 31.08 10.17 2.66 0.49 0.20 0.93 1.26 5.0792 42.36 28.75 38.57 33.03 32.24						
CV(subject_n*Attack_Ty*ses: CV(subject_n*Valence_S*Ses: CV(subject_n*Attack_Ty*Valence_S*Ses:	sion)	1)		27.93 33.59						
Greenhouse-Geisser Correcte				23.33						
				Minimum Epsilon	Greenhouse Geisser Epsilon	Huynh Feldt Epsilon				
Source Attack_Ty Attack_Ty*Valence_S Attack_Ty*Session Attack_Ty*Valence_S*Session	n		F 31.08 0.49 0.20 1.26	P 0.0000 0.4875 0.6549 0.2707	P 0.0000 0.6755 0.8568 M	P 0.0000 0.6870 0.8743 M				
Sphericity Assumption Test	s				Greenhouse	Huynh				
Source subject_n*Attack_Ty subject_n*Attack_Ty*Valence subject_n*Attack_Ty*Session				Minimum Epsilon 0.3333 0.3333 0.3333	Greenhouse Geisser Epsilon 0.8074 0.9396 0.8157	Huynn Feldt Epsilon 0.8863 1.0000 0.8964	Mauchly's Statistic 0.70482 0.90402 0.68447	Chi Sq 9.70 2.80 10.51	DF 5 5 5	P 0.0843 0.7312 0.0620

subject n*Attack Tv*Valence S*Session	0.3333	M	M	M	M	5	M

q

9.										
Statistix 10.0			3/3/2014, 2:59:	01 PM						
Repeated Measures AOV 1	Table for pre_PAN	AS								
Source	DF	SS	MS	F	P					
subject_n (A)	29	9155.3	315.70							
Attack_Ty (B)	3	382.5	127.50	9.71	0.0000					
Error A*B	87	1142.6	13.13							
Valence_S (C)	1	2847.0	2847.00	35.96	0.0000					
Error A*C	29	2295.7	79.16							
Session (D)	1	68.3	68.25	3.28	0.0804					
Error A*D	29	602.9	20.79							
B*C	3 87	483.4	161.14	14.39	0.0000					
Error A*B*C B*D		974.1	11.20 2.27	0.42	0 5300					
Error A*B*D	3 87	6.8 456.3	5.24	0.43	0.7302					
C*D	1	103.6	103.60	7.81	0.0091					
Error A*C*D	29	384.6		7.81	0.0091					
B*C*D	29 3	384.6 9.7	13.26 3.22	0.47	0.7059					
Error A*B*C*D	87	599.4	6.89	0.47	0.7059					
Total	479	19512.1	0.89							
IOLAI	4/9	19512.1								
Grand Mean				14.590	1					
CV(subject_n*Attack_Ty))			24.84						
CV(subject n*Valence S)				60.98						
CV(subject n*Session)	•			31.25						
CV(subject n*Attack Ty*	*Valence S)			22.94						
CV(subject n*Attack Ty*				15.70						
CV(subject n*Valence S*				24.96						
CV(subject_n*Attack_Ty*		n)		17.99						
Greenhouse-Geisser Corn	rected P-Values f	or Nonsphericity			Greenhouse	Huynh				
				Minimum	Geisser	Feldt				
				Epsilon	Epsilon	Epsilon				
Source			F	P	P	P				
Attack Ty			9.71	0.0041	0.0001	0.0000				
Attack Ty*Valence S			14.39	0.0007	0.0001	0.0000				
Attack Ty*Session			0.43	0.5159	0.7141	0.7302				
Attack Ty*Valence S*Ses	ssion		0.47	0.4997	M	0.7302 M				
			0.17	0.1557	**					
Sphericity Assumption 7	Tests				Greenhouse	Huynh				
				Minimum	Geisser	Huynn Feldt	Mauchly's			
Source				Minimum Epsilon	Geisser Epsilon	Felat Epsilon	Mauchiy's Statistic	Chi Sq	DF	
subject n*Attack Ty				0.3333	0.8116	0.8915	0.65522	11.72	DF 5	0.0388
subject_n*Attack_Ty subject n*Attack Ty*Val	longo C			0.3333	0.8116	0.8915	0.84424	4.69	5	0.0388
subject_n*Attack_Ty*val subject n*Attack Ty*Ses				0.3333	0.8950	1.0000	0.84424	4.69	5	0.4544
subject_n*Attack_Ty*Val				0.3333	0.9204 M	1.0000 M	U.05003 M	4.23 M	5	0.51/
ambject_n Actack_Ty val	rence_b Session			0.3333	Pi	Pi	Pi	111	5	r

10.

tatistix 10.0 3/3/2014, 3:23:24 PM

Repeated Measures AOV Table for pre_PA~01

Source	DF	ss	MS	F	P
subject_n (A)	29	34311.9	1183.17		
Attack_Ty (B)	3	1128.7	376.25	13.85	0.0000
Error A*B	87	2364.1	27.17		
Valence_S (C)	1	755.0	755.01	18.22	0.0002
Error A*C	29	1201.9	41.44		
Session (D)	1	580.8	580.80	9.74	0.0041
Error A*D	29	1728.6	59.61		
B*C	3	599.2	199.72	5.76	0.0012
Error A*B*C	87	3018.0	34.69		
B*D	3	2.4	0.82	0.11	0.9568
Error A*B*D	87	675.2	7.76		

Part	C*D Error A*C*D B*C*D Error A*B*C*D	1 29 3 87	7.5 232.1 16.8 929.5	7.50 8.00 5.62 10.68	0.94	0.3411					
Second S	Grand Mean CV(subject_n*Attack_Ty) CV(subject_n*Valence_S) CV(subject_n*Session*Valence CV(subject_n*Attack_Ty*Valence CV(subject_n*Attack_Ty*Session CV(subject_n*Valence_S*Session	e_S) n) n)			22.81 28.17 33.78 25.77 12.19 12.38						
Minimum National	Greenhouse-Geisser Corrected I	P-Values for	Nonsphericity			G	W				
Section Sect	Attack_Ty Attack_Ty*Valence_S Attack_Ty*Session			13.85 5.76 0.11	Epsilon P 0.0008 0.0231 0.7480	Geisser Epsilon P 0.0000 0.0024 0.9367	Feldt Epsilon P 0.0000 0.0017 0.9491				
Minimum Goiseant Paldt Masuchly #	Sphericity Assumption Tests										
Repeated Measures AOV Table for post_PANA	<pre>subject_n*Attack_Ty subject_n*Attack_Ty*Valence_S subject_n*Attack_Ty*Session</pre>				Epsilon 0.3333 0.3333 0.3333	Geisser Epsilon 0.7356 0.8406 0.8451	Feldt Epsilon 0.7988 0.9272 0.9328	Statistic 0.54949 0.72734 0.72109	16.60 8.83 9.06	5 5 5	0.1162 0.1065
Sequence Note Note Sequence Note Sequence Note Sequence Note Note Sequence Note Note Sequence Note	11.										
Source DF 88 MS MS F P P Subject_1 (A) 29 8681.7 299.370	Statistix 10.0			3/3/2014, 3:24:	33 PM						
### Strack_Ty (B) 3 714.7 299.370 ### Attack_Ty (B) 3 714.7 299.370 ### Attack_Ty (B) 3 714.7 2938.225 17.20 0.0000 ### Error A*B 87 1205.2 11.853 ### Valence_S (C) 1 1 102.7 102.675 11.00 0.0025 ### Error A*C 29 270.7 9.334 ### Seasion (D) 19 19 191.7 10.059 ### B** C 3 28.5 9.503 1.15 0.3331 ### B** C 3 3 28.5 9.503 1.15 0.3331 ### B** C 3 3 28.5 9.503 1.15 0.3331 ### B** B** C 3 3 28.3 9.436 1.79 0.1555 ### B** B** C 45 3 28.3 9.436 1.79 0.1555 ### B** C 5 3 28.3 9.436 1.79 0.1555 ### B** C 5 4 5 2.08 0.62 0.4373 ### B** C 5 4 5 2.08 0.62 0.4373 ### B** C 7 1 1 5 2 5 2.08 0.62 0.4373 ### B** C 7 1 1 5 2 5 2.08 0.62 0.4373 ### B** C 7 1 1 2 5 2 5 2.08 0.62 0.4373 ### B** C 7 1 1 2 5 2 5 2.08 0.62 0.4373 ### B** C 7 1 1 2 5 2 5 2.08 0.62 0.4373 ### B** C 7 1 1 2 5 2 5 2.08 0.62 0.4373 ### B** C 7 1 1 2 5 2 5 2.08 0.62 0.4373 ### B** C 7 1 1 2 5 2 5 2.08 0.62 0.4373 ### B** C 7 1 1 2 5 2 5 2.08 0.62 0.4373 ### B** C 7 1 1 2 5 2 5 2.08 0.62 0.4373 ### B** C 7 1 1 2 5 2 5 2.08 0.62 0.4373 ### B** C 7 1 1 2 5 2 5 2.08 0.62 0.4373 ### B** C 7 1 1 2 5 2 5 2.08 0.62 0.4373 ### B** C 7 1 1 2 5 2 5 2.08 0.62 0.4373 ### B** C 7 1 2 5 2 5 2 5 2.08 0.62 0.4373 ### B** C 7 1 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2	Repeated Measures AOV Table for	or post_PANA	A								
Valence_S (C)	subject_n (A) Attack_Ty (B)	29 3	8681.7 714.7	299.370 238.225							
Sension (D)	Valence_S (C)	1	102.7	102.675	11.00	0.0025					
B*C	Session (D)	1	12.7	12.675	1.26	0.2708					
B*D 3 28.3 9.436 1.79 0.1555 Error A*B*D 87 459.3 5.280 C*D 1 5.2 5.208 0.62 0.4373 Error A*C*D 29 243.4 8.394 B*C*D 3 11.5 3.847 0.78 0.5080 Error A*B*B*C*D 87 428.8 4.929 Total 479 13202.6 Grand Mean CV[subject_n*Attack_Ty] CV[subject_n*Valence_S] CV[subject_n*Valence_S) CV[subject_n*Valence_S) CV[subject_n*Attack_Ty*Session] CV[subject_n*Attack_Ty*Valence_S*Session) CV[subject_n*Attack_Ty*Valence_S*Session] CV[subject_n*Attack_Ty*Valence_S*Session] CV[subject_n*Attack_Ty*Valence_S*Session] CV[subject_n*Attack_Ty*Valenc	B*C	3	28.5	9.503	1.15	0.3331					
C*D 1 5.2 5.208 0.62 0.4373 ETROR A*C*D*D 29 243.4 8.394 B*C*D 3 11.5 3.847 0.78 0.5080 ETROR A*B*C*D 8 7 428.8 4.929 Total 479 13202.6 Grand Mean CV(subject_n*Attack_Ty) CV(subject_n*Valence_S) CV(subject_n*Attack_Ty*Valence_S*Session) CV(subject_n*Attack_Ty*Session) CV(subject_n*Attack_Ty*Valence_S*Session) CV(su					1.79	0.1555					
#Error A*C**D 29 243.4 8.394 #B*C*D 3 11.5 3.847 0.78 0.5080 #Error A*B*C*D 87 428.8 4.929 Total 479 13202.6 Grand Mean CV(subject_n*Attack_Ty) CV(subject_n*Attack_Ty) CV(subject_n*Attack_Ty) CV(subject_n*Pattack_Ty*Session) CV(subject_n*Attack_Ty*Session) CV(subject_n*Attack_Ty*Session) CV(subject_n*Attack_Ty*Session) CV(subject_n*Attack_Ty*Session) CV(subject_n*Attack_Ty*Session) CV(subject_n*Attack_Ty*Session) CV(subject_n*Attack_Ty*Session) CV(subject_n*Attack_Ty*Session) CV(subject_n*Attack_Ty*Valence_S*Session) CV(subject_n*Attack_Ty*Valence_S*Session) CV(subject_n*Attack_Ty*Valence_S*Session) CV(subject_n*Attack_Ty*Valence_S*Session) CV(subject_n*Attack_Ty*Valence_S*Session) CV(subject_n*Attack_Ty*Valence_S*Session) Greenhouse ##Inimum Geisser Feldt ##Spsilon Rpsilon ##Spsilon Rpsilon ##Inimum Spsilon ##Inimum S					0.62	0.4373					
Grand Mean CV(subject_n*Attack_Ty) CV(subject_n*Valence_S) CV(subject_n*Session) CV(subject_n*Attack_Ty*Valence_S) CV(subject_n*Attack_Ty*Valence_S) CV(subject_n*Attack_Ty*Session) CV(subject_n*Attack_Ty*Session) CV(subject_n*Attack_Ty*Session) CV(subject_n*Attack_Ty*Session) CV(subject_n*Attack_Ty*Valence_S*Session) CV(subject_n*Attack_Ty*Valence_S*Sessio	B*C*D Error A*B*C*D	3 87	11.5 428.8	3.847	0.78	0.5080					
Greenhouse-Geisser Corrected P-Values for Nonsphericity Greenhouse Huynh	Grand Mean CV(subject_n*Attack_Ty) CV(subject_n*Valence_S) CV(subject_n*Session) CV(subject_n*Attack_Ty*Valence CV(subject_n*Attack_Ty*Session CV(subject_n*Valence_S*Session	e_S) n) n)			25.76 21.15 21.95 19.89 15.91 20.06						
Source F P P P Attack_Ty 17.20 0.0003 0.0000 0.0000 Attack_Ty*Valence_S 1.15 0.2921 0.3294 0.3314 Attack_Ty*Session 1.79 0.1916 0.1594 0.1555											
Attack_Ty 17.20 0.0003 0.0000 0.0000 Attack_Ty*Valence_S 1.15 0.2921 0.3294 0.3314 Attack_Ty*Session 1.79 0.1916 0.1594 0.1555					Epsilon	Geisser Epsilon	Feldt Epsilon				
	Attack_Ty Attack_Ty*Valence_S Attack_Ty*Session			17.20 1.15 1.79	0.0003 0.2921 0.1916	0.0000 0.3294 0.1594	0.0000 0.3314 0.1555				

Sphericity Assumption Tests

Source subject_n*Attack_Ty subject_n*Attack_Ty*Valence_S subject_n*Attack_Ty*Session subject_n*Attack_Ty*Valence_S*Session			Minimum Epsilon 0.3333 0.3333 0.3333	Greenhouse Geisser Epsilon 0.6053 0.8274 0.9369 M	Huynh Feldt Bpsilon 0.6434 0.9109 1.0000	Mauchly's Statistic 0.29921 0.67519 0.89840 M	Chi Sq 33.45 10.89 2.97 M	DF 5 5 5 5	0.0000 0.0536 0.7046 M
12.									
Statistix 10.0		3/3/2014, 3:25:	38 PM						
Repeated Measures AOV Table for post_1	?~01								
Source DF subject_n (A) 29 Attack_Ty (B) 3	ss 43441.4 861.8	MS 1497.98 287.27	F 11.12	P					
Error A*B 87 Valence_S (C) 1 Error A*C 29	2246.9 50.7	25.83 50.70	2.57	0.1200					
Error A*C 29 Session (D) 1 Error A*D 29	572.8 644.0 1973.0	19.75 644.03 68.03	9.47	0.0045					
B*C 3 Error A*B*C 87	34.8 1706.3	11.58 19.61	0.59	0.6228					
B*D 3 Error A*B*D 87	6.3 1444.2	2.09 16.60	0.13	0.9444					
C*D 1 Error A*C*D 29	2.1 572.6	2.13 19.75	0.11	0.7447					
B*C*D 3 Error A*B*C*D 87 Total 479	2.5 1501.3 55060.7	0.83 17.26	0.05	0.9860					
Grand Mean CV(subject_n*Attack_Ty) CV(subject_n*Valence_S) CV(subject_n*Session) CV(subject_n*Attack_Ty*Valence_S) CV(subject_n*Attack_Ty*Session) CV(subject_n*Valence_S*Session) CV(subject_n*Valence_S*Session)	ion)		25.833 19.67 17.20 31.93 17.14 15.77 17.20						
Greenhouse-Geisser Corrected P-Values	for Nonsphericity			Greenhouse	Huynh				
			Minimum Epsilon	Geisser Epsilon	Feldt Epsilon				
Source Attack_Ty Attack_Ty*Valence_S Attack_Ty*Session Attack_Ty*Session		11.12 0.59 0.13 0.05	P 0.0023 0.4484 0.7250 0.8282	P 0.0000 0.6106 0.9289 M	P 0.0000 0.6228 0.9428 M				
Source subject_n*Attack_Ty subject_n*Attack_Ty*Valence_S subject_n*Attack_Ty*Valence_S subject_n*Attack_Ty*Valence_S*Session			Minimum Epsilon 0.3333 0.3333 0.3333	Greenhouse Geisser Epsilon 0.8646 0.9280 0.8890	Huynh Feldt Epsilon 0.9570 1.0000 0.9874 M	Mauchly's Statistic 0.76985 0.88365 0.81402	Chi Sq 7.25 3.43 5.70 M	DF 5 5 5 5	P 0.2026 0.6341 0.3360 M

Statistix 10.0			3/5/2014, 9:27:28 AM							
Repeated Measures AOV Table for RE	L_SCORE									
Source	DF	ss	MS	F	P					
Age L (A)	2	6.993E+08	3.496E+08	0.87	0.4304					
subject_n (B)										
Error A*B	23	9.195E+09	3.998E+08	64.22	0.0000					
Attack_Ty (C) A*C	3 6	4.680E+10 3.612E+09	1.560E+10 6.020E+08	2.48	0.0000					
Error A*B*C	69	1.676E+10	2.429E+08	2.10	0.0311					
Valence_S (D)	1	2.658E+08	2.658E+08	1.26	0.2732					
A*D	2 23	1.529E+08 4.851E+09	7.645E+07 2.109E+08	0.36	0.6999					
Error A*B*D Session (E)	1	4.851E+09 2.421E+09	2.109E+08	11.31	0.0027					
A*E	2	3.781E+08	1.891E+08	0.88	0.4270					
Error A*B*E	23	4.924E+09	2.141E+08							
C*D A*C*D	3 6	2.285E+08 1.135E+09	7.618E+07 1.891E+08	0.36 0.89	0.7845 0.5107					
Error A*B*C*D	69	1.474E+10	2.136E+08	0.05	0.3107					
C*E	3	2.404E+08	8.013E+07	0.29	0.8345					
A*C*E Error A*B*C*E	6	8.343E+08 1.925E+10	1.391E+08 2.790E+08	0.50	0.8074					
D*E	69 1	7.678E+08	7.678E+08	3.05	0.0943					
A*D*E	2	2.539E+08	1.269E+08	0.50	0.6109					
Error A*B*D*E	23	5.798E+09	2.521E+08							
C*D*E A*C*D*E	3 6	8.999E+08 6.421E+08	3.000E+08 1.070E+08	2.42 0.86	0.0735 0.5265					
Error A*B*C*D*E	69	8.556E+09	1.070E+08 1.240E+08	0.00	0.5265					
Total	415									
Note: SS are marginal (type III) s	sums of squ	ares								
Grand Mean				-8577.7						
CV(Age_L*subject_n)				-233.09						
CV(Age_L*subject_n*Attack_Ty)				-181.69						
CV(Age_L*subject_n*Valence_S) CV(Age L*subject n*Session)				-169.30 -170.57						
CV(Age_L*subject_n*Attack_Ty*Valen	ice_S)			-170.40						
CV(Age_L*subject_n*Attack_Ty*Sessi	on)			-194.72						
CV(Age_L*subject_n*Valence_S*Sessi CV(Age_L*subject_n*Attack_Ty*Valen	.on)	\		-185.10 -129.82						
	ice_5 "Sessi	OII)		-129.82						
Greenhouse-Geisser Corrected P-Val	ues for No	nsphericity			Greenhouse	Huumh				
Greenhouse-Geisser Corrected P-Val	ues for No	nsphericity		Minimum	Greenhouse Geisser	Huynh Feldt				
	ues for No	nsphericity		Epsilon	Geisser Epsilon	Feldt Epsilon				
Source	ues for No	nsphericity	F	Epsilon P	Geisser Epsilon P	Feldt Epsilon P				
Source Attack_Ty	ues for No	nsphericity	64.22	Epsilon P 0.0000	Geisser Epsilon P	Feldt Epsilon P 0.0000				
Source	ues for No	nsphericity		Epsilon P	Geisser Epsilon P	Feldt Epsilon P				
Source Attack_Ty Age_L*Attack_Ty Attack_Ty*Valence_S Age_L*Attack_Ty*Valence_S	ues for No	nsphericity	64.22 2.48 0.36 0.89	Epsilon	Geisser Epsilon P 0.0000 0.0533 0.7379 0.4934	Feldt Epsilon P 0.0000 0.0413 0.7780 0.5082				
Source Attack_Ty Age_L*Attack_Ty Attack_Ty*Valence_S Age_L*Attack_Ty*Valence_S Attack_Ty*Session	ues for No	nsphericity	64.22 2.48 0.36 0.89 0.29	Epsilon P 0.0000 0.1060 0.5562 0.4263 0.5971	Geisser Epsilon P 0.0000 0.0533 0.7379 0.4934 0.7635	Feldt Epsilon p 0.0000 0.0413 0.7780 0.5082 0.8013				
Source Attack_Ty Age_L*Attack_Ty Attack_Ty*Valence_S Age_L*Attack_Ty*Valence_S Attack_Ty*Session Age_L*Attack_Ty*Session	ues for No	nsphericity	64.22 2.48 0.36 0.89 0.29 0.50	Epsilon p 0.0000 0.1060 0.5562 0.4263 0.5971 0.6139	Geisser Epsilon P 0.0000 0.0533 0.7379 0.4934 0.7635 0.7467	Feldt Epsilon p 0.0000 0.0413 0.7780 0.5082 0.8013 0.7785				
Source Attack_Ty Age_L*Attack_Ty Attack_Ty*Ualence_S Age_L*Attack_Ty*Valence_S Attack_Ty*Session Age_L*Attack_Ty*Session Attack_Ty*Valence_S*Session	ues for No	nsphericity	64.22 2.48 0.36 0.89 0.29	Epsilon P 0.0000 0.1060 0.5562 0.4263 0.5971	Geisser Epsilon P 0.0000 0.05533 0.7379 0.4934 0.7635 0.7467	Feldt Epsilon P 0.0000 0.0413 0.7780 0.5082 0.8013 0.7785 M				
Source Attack_Ty Age_L*Attack_Ty Attack_Ty*Valence_S Age_L*Attack_Ty*Valence_S Attack_Ty*Session Age_L*Attack_Ty*Session Attack_Ty*Valence_S*Session Age_L*Attack_Ty*Valence_S*Session	ues for No	nsphericity	64.22 2.48 0.36 0.89 0.29 0.50 2.42	Epsilon p 0.0000 0.1060 0.5562 0.4263 0.5971 0.6139 0.1335	Geisser Epsilon P 0.0000 0.0533 0.7379 0.4934 0.7635 0.7467	Feldt Epsilon p 0.0000 0.0413 0.7780 0.5082 0.8013 0.7785				
Source Attack_Ty Age_L*Attack_Ty Attack_Ty*Ualence_S Age_L*Attack_Ty*Valence_S Attack_Ty*Session Age_L*Attack_Ty*Session Attack_Ty*Valence_S*Session	ues for No	nsphericity	64.22 2.48 0.36 0.89 0.29 0.50 2.42	Epsilon p 0.0000 0.1060 0.5562 0.4263 0.5971 0.6139 0.1335	Geisser Epsilon P 0.0000 0.05533 0.7379 0.4934 0.7635 0.7467 M	Feldt Epsilon p 0.0000 0.0413 0.7780 0.5082 0.8013 0.7785 M M				
Source Attack_Ty Age_L*Attack_Ty Attack_Ty*Valence_S Age_L*Attack_Ty*Valence_S Attack_Ty*Session Age_L*Attack_Ty*Session Attack_Ty*Valence_S*Session Age_L*Attack_Ty*Valence_S*Session	ues for No	nsphericity	64.22 2.48 0.36 0.89 0.29 0.50 2.42	Epsilon P 0.0000 0.1060 0.5562 0.4263 0.5971 0.6139 0.1335 0.4351	Geisser Epsilon P 0.0000 0.05533 0.7379 0.4934 0.7635 0.7467	Feldt Epsilon P 0.0000 0.0413 0.7780 0.5082 0.8013 0.7785 M	Mauchly's			
Source Attack_Ty Age_L*Attack_Ty Attack_Ty*Valence_S Age_L*Attack_Ty*Valence_S Attack_Ty*Session Age_L*Attack_Ty*Session Age_L*Attack_Ty*Valence_S*Session Age_L*Attack_Ty*Valence_S*Session Sphericity Assumption Tests Source	ues for No	nsphericity	64.22 2.48 0.36 0.89 0.29 0.50 2.42	### Repsilon ### 0.0000 0.1060 0.5562 0.4263 0.5971 0.6139 0.1335 0.4351 #### Minimum ###################################	Geisser Epsilon P 0.0000 0.0533 0.7379 0.4934 0.7635 0.7467 M M Greenhouse Geisser Epsilon	Feldt Epsilon P 0.0000 0.0413 0.7780 0.5082 0.8013 0.7785 M M Huynh Feldt Epsilon	Mauchly's Statistic	Chi Sq	DF	
Source Attack_Ty Age_L*Attack_Ty Attack_Ty*Valence_S Age_L*Attack_Ty*Valence_S Attack_Ty*Session Age_L*Attack_Ty*Session Attack_Ty*Valence_S*Session Age_L*Attack_Ty*Valence_S*Session Sphericity Assumption Tests Source Age_L*subject_n*Attack_Ty		nsphericity	64.22 2.48 0.36 0.89 0.29 0.50 2.42	### Repsilon ### 0.0000 0.1060 0.5562 0.4263 0.5971 0.6139 0.1335 0.4351 #### Minimum ##################################	Geisser Epsilon P 0.0000 0.05533 0.7379 0.4934 0.7635 0.7467 M M Greenhouse Geisser Epsilon 0.7042	Feldt Epsilon P 0.0000 0.0413 0.7780 0.5082 0.8013 0.7785 M M Huynh Feldt Epsilon 0.8447	Statistic 0.43833	17.92	5	0.003
Source Attack_Ty Age_L*Attack_Ty Attack_Ty*Valence_S Age_L*Attack_Ty*Valence_S Attack_Ty*Valence_S Attack_Ty*Valence_S Age_L*Attack_Ty*Session Attack_Ty*Valence_S*Session Attack_Ty*Valence_S*Session Age_L*Attack_Ty*Valence_S*Session Sphericity Assumption Tests Source Age_L*subject_n*Attack_Ty Age_L*subject_n*Attack_Ty*Valence_		nsphericity	64.22 2.48 0.36 0.89 0.29 0.50 2.42	### Resilon ### 0.0000 0.1060 0.5562 0.4263 0.5971 0.6139 0.1335 0.4351 #### Minimum ###################################	Geisser Epsilon 0.000 0.0533 0.7379 0.4934 0.7635 0.7467 M M Greenhouse Geisser Epsilon 0.7042 0.7930	Feldt Epsilon P 0.0000 0.0413 0.7780 0.5082 0.8013 0.7785 M M Huynh Feldt Epsilon 0.8447 0.9675	Statistic 0.43833 0.66899	17.92 8.73	5 5	0.120
Source Attack_Ty Age_L*Attack_Ty Attack_Ty*Valence_S Age_L*Attack_Ty*Valence_S Attack_Ty*Session Age_L*Attack_Ty*Session Attack_Ty*Valence_S*Session Age_L*Attack_Ty*Valence_S*Session Sphericity Assumption Tests Source Age_L*subject_n*Attack_Ty Age_L*subject_n*Attack_Ty*Valence_Age_L*subject_n*Attack_Ty*Session	s	nsphericity	64.22 2.48 0.36 0.89 0.29 0.50 2.42	### Repailon ### 0.0000 0.1060 0.1060 0.5562 0.4263 0.5971 0.6139 0.1335 0.4351 #### Minimum ###################################	Geisser Epsilon p 0.0000 0.0533 0.7379 0.4934 0.7635 0.7467 M M Greenhouse Geisser Epsilon 0.7042 0.7930 0.7044	Feldt Epsilon P 0.0000 0.0413 0.7780 0.5082 0.8013 0.7785 M M Huynh Feldt Epsilon 0.8447	Statistic 0.43833 0.66899 0.53732	17.92	5 5 5	
Source Attack_Ty Age_L*Attack_Ty Attack_Ty*Valence_S Age_L*Attack_Ty*Valence_S Attack_Ty*Valence_S Attack_Ty*Valence_S Age_L*Attack_Ty*Session Attack_Ty*Valence_S*Session Attack_Ty*Valence_S*Session Age_L*Attack_Ty*Valence_S*Session Sphericity Assumption Tests Source Age_L*subject_n*Attack_Ty Age_L*subject_n*Attack_Ty*Valence_	s	nsphericity	64.22 2.48 0.36 0.89 0.29 0.50 2.42	### Resilon ### 0.0000 0.1060 0.5562 0.4263 0.5971 0.6139 0.1335 0.4351 #### Minimum ###################################	Geisser Epsilon 0.000 0.0533 0.7379 0.4934 0.7635 0.7467 M M Greenhouse Geisser Epsilon 0.7042 0.7930	Feldt Epsilon p 0.0000 0.0413 0.7780 0.5082 0.8013 0.7785 M M Huynh Feldt Epsilon 0.8447 0.9675 0.8449	Statistic 0.43833 0.66899	17.92 8.73 13.49	5 5	0.120
Source Attack_Ty Age_L*Attack_Ty*Valence_S Age_L*Attack_Ty*Valence_S Attack_Ty*Valence_S Attack_Ty*Session Age_L*Attack_Ty*Session Attack_Ty*Valence_S*Session Attack_Ty*Valence_S*Session Sphericity Assumption Tests Source Age_L*subject_n*Attack_Ty*Valence_Age_L*subject_n*Attack_Ty*Valence_Age_L*subject_n*Attack_Ty*Valence_Age_L*subject_n*Attack_Ty*Valence_Box's Test for Equality of Covaria	S S*Session		64.22 2.48 0.36 0.89 0.29 0.50 2.42	### Repsilon ### 0.0000 0.1060 0.5562 0.4263 0.5971 0.6139 0.1335 0.4351 #### Minimum ###################################	Geisser Epsilon P 0.0000 0.0533 0.7379 0.4934 0.7635 0.7467 M M Greenhouse Geisser Epsilon 0.7042 0.7930 0.7944 M	Feldt Epsilon P 0.0000 0.0413 0.7788 0.5082 0.8013 0.7785 M M Huynh Feldt Epsilon 0.8447 0.9675 0.8449 M	Statistic 0.43833 0.66899 0.53732 M	17.92 8.73 13.49 M	5 5 5 5	0.120
Source Attack_Ty Age_L*Attack_Ty Attack_Ty*Valence_S Age_L*Attack_Ty*Valence_S Attack_Ty*Vsession Age_L*Attack_Ty*Session Attack_Ty*Vslence_S*Session Age_L*Attack_Ty*Valence_S*Session Sphericity Assumption Tests Source Age_L*subject_n*Attack_Ty*Valence_Age_L*subject_n*Attack_Ty*Valence_Age_L*subject_n*Attack_Ty*Valence_Box's Test for Equality of Covaria Source	S S*Session		64.22 2.48 0.36 0.89 0.29 0.50 2.42	### Repsilon ### 0.0000 0.1060 0.1562 0.4263 0.5971 0.6139 0.1335 0.4351 #### Minimum ###################################	Geisser Epsilon p 0.0000 0.0533 0.7379 0.4934 0.7635 0.7467 M M Greenhouse Geisser Epsilon 0.7042 0.7930 0.7044	Feldt Epsilon p 0.0000 0.0413 0.7780 0.5082 0.8013 0.7785 M M Huynh Feldt Epsilon 0.8447 0.9675 0.8449	Statistic 0.43833 0.66899 0.53732	17.92 8.73 13.49	5 5 5 5	0.120
Source Attack_Ty Age_L*Attack_Ty Age_L*Attack_Ty*Valence_S Age_L*Attack_Ty*Valence_S Attack_Ty*Session Age_L*Attack_Ty*Session Attack_Ty*Valence_S*Session Attack_Ty*Valence_S*Session Sphericity Assumption Tests Source Age_L*subject_n*Attack_Ty*Valence_Age_L*subject_n*Attack_Ty*Valence_Age_L*subject_n*Attack_Ty*Valence_Age_L*subject_n*Attack_Ty*Valence_Box's Test for Equality of Covaria Source Age_L*subject_n*Attack_Ty*Session Age_L*subject_n*Attack_Ty*Session Age_L*subject_n*Attack_Ty*Session Age_L*subject_n*Attack_Ty*Session Age_L*subject_n*Attack_Ty*Session Age_L*subject_n*Attack_Ty*Session Age_L*subject_n*Attack_Ty*Session Age_L*subject_n*Attack_Ty*Session	S S*Session unce Matric		64.22 2.48 0.36 0.89 0.29 0.50 2.42	### Bpsilon P	Geisser Epsilon P 0.0000 0.0533 0.7379 0.4934 0.7635 0.7467 M M Greenhouse Geisser Epsilon 0.7042 0.7930 0.7944 M	Feldt Epsilon P 0.0000 0.0413 0.7788 0.5082 0.8013 0.7785 M M Huynh Feldt Epsilon 0.8447 0.9675 0.8449 M	Statistic 0.43833 0.66899 0.53732 M	17.92 8.73 13.49 M	5 5 5 5	0.120
Source Attack_Ty Age_L*Attack_Ty Age_L*Attack_Ty*Valence_S Age_L*Attack_Ty*Valence_S Attack_Ty*Session Age_L*Attack_Ty*Session Age_L*Attack_Ty*Session Age_L*Attack_Ty*Valence_S*Session Sphericity Assumption Tests Source Age_L*subject_n*Attack_Ty*Valence_ Age_L*subject_n*Attack_Ty*Valence_ Box's Test for Equality of Covaria Source Age_L*subject_n*Attack_Ty*Valence_ Box's Test for Equality of Covaria Source Age_L*subject_n*Attack_Ty*Valence_ Age_L*subject_n*Attack_Ty*Valence_ Age_L*subject_n*Attack_Ty*Valence_ Age_L*subject_n*Attack_Ty*Valence_ Age_L*subject_n*Attack_Ty*Valence_ Age_L*subject_n*Attack_Ty*Valence_ Age_L*subject_n*Attack_Ty*Valence_ Age_L*subject_n*Attack_Ty*Session	S S*Session unce Matric		64.22 2.48 0.36 0.89 0.29 0.50 2.42	### Repsilon ### 0.0000 0.1060 0.1562 0.4263 0.5971 0.6139 0.1335 0.4351 #### Minimum ###################################	Geisser Epsilon P 0.0000 0.0533 0.7379 0.4934 0.7635 0.7467 M M Greenhouse Geisser Epsilon 0.7042 0.7930 0.7944 M	Feldt Epsilon P 0.0000 0.0413 0.7788 0.5082 0.8013 0.7785 M M Huynh Feldt Epsilon 0.8447 0.9675 0.8449 M	Statistic 0.43833 0.66899 0.53732 M	17.92 8.73 13.49 M	5 5 5 5	0.120
Source Attack_Ty Age_L*Attack_Ty Age_L*Attack_Ty*Valence_S Age_L*Attack_Ty*Valence_S Attack_Ty*Session Age_L*Attack_Ty*Session Attack_Ty*Valence_S*Session Attack_Ty*Valence_S*Session Sphericity Assumption Tests Source Age_L*subject_n*Attack_Ty*Valence_Age_L*subject_n*Attack_Ty*Valence_Age_L*subject_n*Attack_Ty*Valence_Age_L*subject_n*Attack_Ty*Valence_Box's Test for Equality of Covaria Source Age_L*subject_n*Attack_Ty*Session Age_L*subject_n*Attack_Ty*Session Age_L*subject_n*Attack_Ty*Session Age_L*subject_n*Attack_Ty*Session Age_L*subject_n*Attack_Ty*Session Age_L*subject_n*Attack_Ty*Session Age_L*subject_n*Attack_Ty*Session Age_L*subject_n*Attack_Ty*Session	S S*Session unce Matric		64.22 2.48 0.36 0.89 0.29 0.50 2.42	### Bysilon ### 0.0000 0.1060 0.5562 0.4263 0.5971 0.6139 0.1335 0.4351 #### Minimum ###################################	Geisser Epsilon P 0.0000 0.0533 0.7379 0.4934 0.7635 0.7467 M M Greenhouse Geisser Epsilon 0.7042 0.7930 0.7944 M	Feldt Epsilon P 0.0000 0.0413 0.7788 0.5082 0.8013 0.7785 M M Huynh Feldt Epsilon 0.8447 0.9675 0.8449 M	Statistic 0.43833 0.66899 0.53732 M	17.92 8.73 13.49 M	5 5 5 5	0.120
Source Attack_Ty Age_L*Attack_Ty Age_L*Attack_Ty*Valence_S Age_L*Attack_Ty*Valence_S Attack_Ty*Session Age_L*Attack_Ty*Session Age_L*Attack_Ty*Session Age_L*Attack_Ty*Valence_S*Session Sphericity Assumption Tests Source Age_L*subject_n*Attack_Ty*Valence_ Age_L*subject_n*Attack_Ty*Valence_ Box's Test for Equality of Covaria Source Age_L*subject_n*Attack_Ty*Valence_ Box's Test for Equality of Covaria Source Age_L*subject_n*Attack_Ty*Valence_ Age_L*subject_n*Attack_Ty*Valence_ Age_L*subject_n*Attack_Ty*Valence_ Age_L*subject_n*Attack_Ty*Valence_ Age_L*subject_n*Attack_Ty*Valence_ Age_L*subject_n*Attack_Ty*Valence_ Age_L*subject_n*Attack_Ty*Valence_ Age_L*subject_n*Attack_Ty*Session	S S*Session unce Matric		64.22 2.48 0.36 0.89 0.29 0.50 2.42	### Bpsilon ### 0.0000 0.1060 0.5552 0.4263 0.5971 0.6139 0.1335 0.4351 #### Minimum ###################################	Geisser Epsilon P 0.0000 0.0533 0.7379 0.4934 0.7635 0.7467 M M Greenhouse Geisser Epsilon 0.7042 0.7930 0.7944 M	Feldt Epsilon P 0.0000 0.0413 0.7788 0.5082 0.8013 0.7785 M M Huynh Feldt Epsilon 0.8447 0.9675 0.8449 M	Statistic 0.43833 0.66899 0.53732 M	17.92 8.73 13.49 M	5 5 5 5	0.120
Source Attack_Ty Age_L*Attack_Ty Age_L*Attack_Ty*Valence_S Age_L*Attack_Ty*Valence_S Age_L*Attack_Ty*Session Age_L*Attack_Ty*Session Age_L*Attack_Ty*Session Age_L*Attack_Ty*Valence_S*Session Sphericity Assumption Tests Source Age_L*subject_n*Attack_Ty*Valence_ Age_L*subject_n*Attack_Ty*Valence_ Age_L*subject_n*Attack_Ty*Valence_ Box's Test for Equality of Covaria Source Age_L*subject_n*Attack_Ty*Valence_ Age_L*subject_n*Attack_Ty*Valence_ Age_L*subject_n*Attack_Ty*Valence_ Age_L*subject_n*Attack_Ty*Valence_ Age_L*subject_n*Attack_Ty*Valence_ Age_L*subject_n*Attack_Ty*Valence_ Age_L*subject_n*Attack_Ty*Valence_ Age_L*subject_n*Attack_Ty*Valence_ Age_L*subject_n*Attack_Ty*Valence_	S S*Session unce Matric		64.22 2.48 0.36 0.89 0.29 0.50 2.42 0.86	### Bpsilon ### 0.0000 0.1060 0.5552 0.4263 0.5971 0.6139 0.1335 0.4351 #### Minimum ###################################	Geisser Epsilon P 0.0000 0.0533 0.7379 0.4934 0.7635 0.7467 M M Greenhouse Geisser Epsilon 0.7042 0.7930 0.7944 M	Feldt Epsilon P 0.0000 0.0413 0.7788 0.5082 0.8013 0.7785 M M Huynh Feldt Epsilon 0.8447 0.9675 0.8449 M	Statistic 0.43833 0.66899 0.53732 M	17.92 8.73 13.49 M	5 5 5 5	0.120
Source Attack_Ty Age_L*Attack_Ty Age_L*Attack_Ty*Valence_S Age_L*Attack_Ty*Valence_S Age_L*Attack_Ty*Valence_S Attack_Ty*Session Age_L*Attack_Ty*Session Age_L*Attack_Ty*Valence_S*Session Sphericity Assumption Tests Source Age_L*subject_n*Attack_Ty*Valence_Age_L*subject_n*Attack_Ty*Valence_Box's Test for Equality of Covaria Source Age_L*subject_n*Attack_Ty*Valence_Box's Test for Equality of Covaria Source Age_L*subject_n*Attack_Ty*Valence_Age_L*subject_n*Attack_Ty*Valence_Age_L*subject_n*Attack_Ty*Valence_Age_L*subject_n*Attack_Ty*Valence_Age_L*subject_n*Attack_Ty*Valence_Subject_n*A	S S*Session unce Matric S S*Session		64.22 2.48 0.36 0.89 0.29 0.50 2.42	### Bpsilon ### 0.0000 0.1060 0.5552 0.4263 0.5971 0.6139 0.1335 0.4351 #### Minimum ###################################	Geisser Epsilon P 0.0000 0.0533 0.7379 0.4934 0.7635 0.7467 M M Greenhouse Geisser Epsilon 0.7042 0.7930 0.7944 M	Feldt Epsilon P 0.0000 0.0413 0.7788 0.5082 0.8013 0.7785 M M Huynh Feldt Epsilon 0.8447 0.9675 0.8449 M	Statistic 0.43833 0.66899 0.53732 M	17.92 8.73 13.49 M	5 5 5 5	0.120
Source Attack_Ty Age_L*Attack_Ty Attack_Ty*Valence_S Age_L*Attack_Ty*Valence_S Attack_Ty*Valence_S Attack_Ty*Session Age_L*Attack_Ty*Session Age_L*Attack_Ty*Session Age_L*Attack_Ty*Valence_S*Session Sphericity Assumption Tests Source Age_L*subject_n*Attack_Ty*Valence_Age_L*subject_n*Attack_Ty*Valence_Box*Session Age_L*subject_n*Attack_Ty*Valence_Box*Session Age_L*subject_n*Attack_Ty*Valence_Age_L*subject_n*Attack_Ty*Valence_Age_L*subject_n*Attack_Ty*Valence_Age_L*subject_n*Attack_Ty*Valence_Age_L*subject_n*Attack_Ty*Valence_Age_L*subject_n*Attack_Ty*Valence_Session Age_L*subject_n*Attack_Ty*Valence_Session Age	S S*Session unce Matric S S*Session	es	64.22 2.48 0.36 0.89 0.29 0.50 2.42 0.86	### Bpsilon ### 0.0000 0.1060 0.5562 0.4263 0.5971 0.6139 0.1335 0.4351 #### Minimum ###################################	Geisser Epsilon P 0.0000 0.0533 0.7379 0.4934 0.7635 0.7467 M M Greenhouse Geisser Epsilon 0.7042 0.7930 0.7944 M F DF1	Feldt Epsilon P 0.0000 0.0413 0.7788 0.5082 0.8013 0.7785 M M Huynh Feldt Epsilon 0.8447 0.9675 0.8449 M	Statistic 0.43833 0.66899 0.53732 M	17.92 8.73 13.49 M	5 5 5 5	0.120
Source Attack_Ty Age_L*Attack_Ty Age_L*Attack_Ty*Valence_S Age_L*Attack_Ty*Valence_S Attack_Ty*Session Age_L*Attack_Ty*Session Attack_Ty*Valence_S*Session Attack_Ty*Valence_S*Session Age_L*Attack_Ty*Valence_S*Session Sphericity Assumption Tests Source Age_L*subject_n*Attack_Ty*Valence_Age_L*subject_n*Attack_Ty*Valence_Age_L*subject_n*Attack_Ty*Valence_Box's Test for Equality of Covaria Source Age_L*subject_n*Attack_Ty*Valence_Age_L*subject_n*Attack_Ty*Valence_Age_L*subject_n*Attack_Ty*Valence_Age_L*subject_n*Attack_Ty*Valence_Age_L*subject_n*Attack_Ty*Valence_Age_L*subject_n*Attack_Ty*Valence_Statistix_10.0 Repeated Measures AOV Table for RE Source	S S*Session unce Matric S S*Session		64.22 2.48 0.36 0.89 0.29 0.50 2.42 0.86	## Bpsilon ## 0.0000 0.1060 0.5562 0.4263 0.5971 0.6139 0.1335 0.4351 ## Minimum ## Epsilon 0.3333 0.3333 0.3333 0.3333 ## M	Geisser Epsilon P 0.0000 0.0533 0.7379 0.4934 0.7635 0.7467 M M Greenhouse Geisser Epsilon 0.7042 0.7930 0.7044 M F DF1	Feldt Epsilon P 0.0000 0.0413 0.7788 0.5082 0.8013 0.7785 M M Huynh Feldt Epsilon 0.8447 0.9675 0.8449 M	Statistic 0.43833 0.66899 0.53732 M	17.92 8.73 13.49 M	5 5 5 5	0.120
Source Attack_Ty Age_L*Attack_Ty Attack_Ty*Valence_S Age_L*Attack_Ty*Valence_S Attack_Ty*Valence_S Attack_Ty*Session Age_L*Attack_Ty*Session Age_L*Attack_Ty*Session Age_L*Attack_Ty*Valence_S*Session Sphericity Assumption Tests Source Age_L*subject_n*Attack_Ty*Valence_Age_L*subject_n*Attack_Ty*Valence_Box*Session Age_L*subject_n*Attack_Ty*Valence_Box*Session Age_L*subject_n*Attack_Ty*Valence_Age_L*subject_n*Attack_Ty*Valence_Age_L*subject_n*Attack_Ty*Valence_Age_L*subject_n*Attack_Ty*Valence_Age_L*subject_n*Attack_Ty*Valence_Age_L*subject_n*Attack_Ty*Valence_Session Age_L*subject_n*Attack_Ty*Valence_Session Age	S S*Session unce Matric S S*Session L_SCORE DF	es	64.22 2.48 0.36 0.89 0.29 0.50 2.42 0.86	### ##################################	Geisser Epsilon P 0.0000 0.0533 0.7379 0.4934 0.7635 0.7467 M M Greenhouse Geisser Epsilon 0.7042 0.7930 0.7944 M F DF1	Feldt Epsilon P 0.0000 0.0413 0.7788 0.5082 0.8013 0.7785 M M Huynh Feldt Epsilon 0.8447 0.9675 0.8449 M	Statistic 0.43833 0.66899 0.53732 M	17.92 8.73 13.49 M	5 5 5 5	0.120

Ed_Yrs_L*Attack_Ty*Valence_	_S*Session		0.85	0.4417	M	M
Attack_Ty*Valence_S*Session	n		3.08	0.0941	M	M
Ed_Yrs_L*Attack_Ty*Session			2.43	0.1126	0.0465	0.0357
Attack_Ty*Session	_		0.51	0.4819	0.6442	0.6751
Ed_Yrs_L*Attack_Ty*Valence_	_S		0.40	0.6723	0.8181	0.8530
Attack_Ty*Valence_S			0.10	0.7588	0.9204	0.9480
Ed_Yrs_L*Attack_Ty			0.67	0.5241	0.6250	0.6532
Attack_Ty			43.37	0.0000	0.0000	0.0000
Source			F	P	P	P
				Epsilon	Epsilon	Epsilon
				Minimum	Greenhouse Geisser	Huynh Feldt
Greenhouse-Geisser Correcte	ed P-Values for No	onsphericity				
= = =						
CV(Ed_Yrs_L*subject_n*Attac		ession)		-134		
CV(Ed_Yrs_L*subject_n*Valer				-184		
CV(Ed_Yrs_L*subject_n*Attac				-184	1.87	
CV(Ed_Yrs_L*subject_n*Attac				-174	1.28	
CV(Ed_Yrs_L*subject_n*Sessi				-190	0.27	
CV(Ed_Yrs_L*subject_n*Valer				-168	3.25	
CV(Ed_Yrs_L*subject_n*Attac	ck_Ty)			-209	9.37	
CV(Ed_Yrs_L*subject_n)				-232	2.08	
Grand Mean				-827	78.5	
Note: SS are marginal (type	e III) sums of squ	ares				
Total	383					
Error A*B*C*D*E	63	7.792E+09	1.237E+08			
A*C*D*E	6	6.307E+08	1.051E+08	0.85	0.5366	
C*D*E	3	1.141E+09	3.804E+08	3.08	0.0339	
Error A*B*D*E	21	4.905E+09	2.336E+08			
A*D*E	2	5.601E+08	2.801E+08	1.20	0.3213	
D*E	1	8.822E+08	8.822E+08	3.78	0.0655	
Error A*B*C*E	63	1.476E+10	2.342E+08	2.15		
A*C*E	6	3.412E+09	5.686E+08	2.43	0.0357	
C*E	3	3.602E+08	1.201E+08	0.51	0.6751	
Error A*B*C*D	63	1.311E+10	2.082E+08	0.10	0.0732	
A*C*D	6	5.055E+08	8.425E+07	0.10	0.8732	
C*D	3	6.043E+07	2.481E+08 2.014E+07	0.10	0.9615	
Error A*B*E	21	5.210E+09	5529670 2.481E+08	0.02	0.9780	
Session (E) A*E	2	1.106E+07		0.02	0.0017	
Session (E)	1	4.074E+09 3.221E+09	1.940E+08 3.221E+09	12.98	0.0017	
A*D Error A*B*D	21	1.586E+U8 4.074E+09	1.940E+08	0.41	0.6697	
Valence_S (D) A*D	2	3.944E+U8 1.586E+08	3.944E+08 7.929E+07	0.41	0.1686	
Error A*B*C	1	1.893E+10 3.944E+08	3.004E+08 3.944E+08	2.03	0.1686	
A*C	6 63	1.201E+09	2.002E+08	0.67	0.6769	
Attack_Ty (C)	3	3.909E+10	1.303E+10	43.37	0.0000	
Error A*B	21	7.752E+09	3.691E+08			
subject_n (B)						
1 1 (7)						

Sphericity Assumption Tests

	Minimum	Greenhouse Geisser	Huynh Feldt	Mauchly's		
Source	Epsilon	Epsilon	Epsilon	Statistic	Chi Sq	DF
P						
Ed_Yrs_L*subject_n*Attack_Ty	0.3333	0.6965	0.8487	0.26932	25.87	5
	0.0001					
Ed_Yrs_L*subject_n*Attack_Ty*Valence_S	0.3333	0.7204	0.8824	0.56974	11.10	5
	0.0495					
Ed_Yrs_L*subject_n*Attack_Ty*Session	0.3333	0.8414	1.0000	0.74670	5.76	5
	0.3302					
Ed_Yrs_L*subject_n*Attack_Ty*Valence_S*Session	0.3333	M	M	M	M	5
M						
Box's Test for Equality of Covariance Matrices						
Source	Box's M	F DF1	DF2 P(F)	Chi Sq	DF P(Chi	Sq)
	M					
	M					
	M					
Ed_Yrs_L*subject_n*Attack_Ty*Valence_S*Session	M					
<pre>Ed_Yrs_L*subject_n*Attack_Ty Ed_Yrs_L*subject_n*Attack_Ty*Valence_S Ed_Yrs_L*subject_n*Attack_Ty*Session</pre>	М М М	F DF1	DF2 P(F)	Chi Sq	DF P(Chi	Sq)

Statistix 10.0 3/5/2014, 9:39:04 AM

Repeated Measures AOV Table for REL_SCORE

Source	DF	ss	MS	F	P							
M T Time (A)	2	3.847E+08	1.923E+08	0.45	0.6407							
subject_n (B)												
Error A*B	23	9.747E+09	4.238E+08									
Attack_Ty (C)	3	5.812E+10	1.937E+10	66.19	0.0000							
A*C	6	7.039E+08	1.173E+08	0.40	0.8761							
Error A*B*C	69	2.020E+10	2.927E+08									
Valence_S (D)	1	2.788E+08	2.788E+08	1.22	0.2804							
A*D Error A*B*D	2 23	4.042E+08	2.021E+08 2.282E+08	0.89	0.4261							
Session (E)	1	5.249E+09 4.171E+09	4.171E+09	13.27	0.0014							
A*E	2	5.107E+07	2.553E+07	0.08	0.9223							
Error A*B*E	23	7.231E+09	3.144E+08	0.00	0.5225							
C*D	3	2.641E+08	8.802E+07	0.49	0.6899							
A*C*D	6	1.845E+09	3.075E+08	1.71	0.1307							
Error A*B*C*D	69	1.238E+10	1.794E+08									
C*E	3	2.368E+08	7.894E+07	0.29	0.8359							
A*C*E	6	1.679E+09	2.799E+08	1.01	0.4253							
Error A*B*C*E	69	1.910E+10	2.768E+08									
D*E	1	9.800E+08	9.800E+08	3.43	0.0768							
A*D*E	2	9.262E+07	4.631E+07	0.16	0.8513							
Error A*B*D*E	23	6.569E+09	2.856E+08	3.77	0.0145							
C*D*E	3	1.252E+09	4.172E+08		0.0145							
A*C*D*E Error A*B*C*D*E	6 69	1.625E+09 7.642E+09	2.709E+08 1.108E+08	2.45	0.0334							
Total	415	7.642E+09	1.108E+08									
Note: SS are marginal (type	e III) sums of squ	ares										
Grand Mean				-8	3464.0							
CV(M_T_Time_*subject_n)					43.21							
CV(M_T_Time_*subject_n*Atta	ack_Ty)				202.14							
CV(M_T_Time_*subject_n*Vale	ence_S)				.78.48							
CV(M_T_Time_*subject_n*Sess	sion)			-2	09.49							
CV(M_T_Time_*subject_n*Atta	ack_Ty*Valence_S)				.58.25							
CV(M_T_Time_*subject_n*Atta					.96.56							
CV(M_T_Time_*subject_n*Vale					.99.66							
CV(M_T_Time_*subject_n*Atta	ack_Ty*Valence_S*S	Bession)		-1	.24.34							
Greenhouse-Geisser Correcte	ed P-Values for No	onsphericity										
					Greenhou			iynh				
				Minimum Epsilon	Geiss Epsil		Fe Epsi	ldt				
Source			F	Epsiion		DII D	Epsi	P				
Attack_Ty			66.19	0.0000	0.00	-	0.0	0000				
M_T_Time_*Attack_Ty			0.40	0.6744	0.82			8551				
Attack_Ty*Valence_S			0.49	0.4907	0.64			813				
M_T_Time_*Attack_Ty*Valence	e S		1.71	0.2024	0.15			.348				
Attack_Ty*Session			0.29	0.5984	0.77	52	0.8	3139				
M_T_Time_*Attack_Ty*Session	n		1.01	0.3794	0.41	54	0.4	1218				
Attack_Ty*Valence_S*Session			3.77	0.0646		M		M				
M_T_Time_*Attack_Ty*Valence	e_S*Session		2.45	0.1089		M		M				
Sphericity Assumption Tests	s											
					Greenh			Huynh				
				Minimu		sser		Feldt	Mauchly's			
Source				Epsilo		ilon		silon	Statistic	Chi Sq	DF	P
M_T_Time_*subject_n*Attack_				0.333		7288		.8784	0.39285	20.30	5	0.0011
M_T_Time_*subject_n*Attack_				0.333		7833 7394		0.9539 0.8930	0.66329 0.61272	8.92 10.64	5	0.1124 0.0590
M_T_Time_*subject_n*Attack_ M_T_Time_*subject_n*Attack_		sion		0.333		/394 M		M	0.612/2 M	10.04 M	5	0.0590 M
											-	-*
Box's Test for Equality of Source	Covariance Matric	es		Box's M	F	DF1	DF2	P(F)	Chi Sq	DF P(Ch	i Sq)	
M_T_Time_*subject_n*Attack_	Tv			BOX'S M	r	DFI	DF Z	F(F)	cur ad	Dr P(CI	r 54)	
M_T_Time_*subject_n*Attack_				M								
M_T_Time_*subject_n*Attack				M								
M_T_Time_*subject_n*Attack		sion		M								
				•								

Statistix 10.0 3/5/2014, 9:40:02 AM

Repeated Measures AOV Table for REL_SCORE

 Source
 DF
 SS
 MS
 F
 P

 S_T_Time_ (A)
 2
 3.839E+08
 1.919E+08
 0.49
 0.6174

subject n (B)										
Error A*B	21	8.167E+09	3.889E+08							
Attack_Ty (C)	3	4.909E+10	1.636E+10	58.45	0.0000					
A*C	6	2.051E+09	3.418E+08	1.22	0.3075					
Error A*B*C	63	1.764E+10	2.799E+08	1.22	0.3073					
Valence_S (D)	1	6.555E+08	6.555E+08	2.95	0.1009					
A*D	2	2.867E+08	1.433E+08	0.64	0.5353					
Error A*B*D	21	4.674E+09	2.226E+08							
Session (E)	1	4.685E+09	4.685E+09	17.51	0.0004					
A*E	2	2.498E+08	1.249E+08	0.47	0.6335					
Error A*B*E	21	5.621E+09	2.677E+08							
C*D	3	3.732E+08	1.244E+08	0.60	0.6195					
A*C*D	6	7.711E+08	1.285E+08	0.62	0.7162					
Error A*B*C*D	63	1.313E+10	2.085E+08							
C*E	3	3.470E+08	1.157E+08	0.45	0.7200					
A*C*E	6	1.794E+09	2.990E+08	1.16	0.3409					
Error A*B*C*E	63	1.629E+10	2.585E+08							
D*E	1	1.297E+09	1.297E+09	6.08	0.0224					
A*D*E	2	1.720E+09	8.599E+08	4.03	0.0330					
Error A*B*D*E	21	4.480E+09	2.134E+08							
C*D*E	3	1.283E+09	4.276E+08	3.34	0.0247					
A*C*D*E	6	9.286E+08	1.548E+08	1.21	0.3132					
Error A*B*C*D*E	63	8.060E+09	1.279E+08							
Total	383									
Note: SS are marginal (type	TII) sums of so	nares								
	III) Damb of bq	aarco								
Grand Mean				-8694						
CV(S_T_Time_*subject_n)				-226.						
CV(S_T_Time_*subject_n*Attac				-192.						
CV(S_T_Time_*subject_n*Valer				-171.						
CV(S_T_Time_*subject_n*Sessi				-188. -166.						
CV(S_T_Time_*subject_n*Attac										
CV(S_T_Time_*subject_n*Attac	ck_Ty*Session)			-184.	94					
CV(S_T_Time_*subject_n*Attac CV(S_T_Time_*subject_n*Valer	ck_Ty*Session) nce_S*Session)	Session)		-184. -168.	94 01					
CV(S_T_Time_*subject_n*Attac CV(S_T_Time_*subject_n*Valer CV(S_T_Time_*subject_n*Attac	ck_Ty*Session) nce_S*Session) ck_Ty*Valence_S*			-184.	94 01					
CV(S_T_Time_*subject_n*Attac CV(S_T_Time_*subject_n*Valer	ck_Ty*Session) nce_S*Session) ck_Ty*Valence_S*			-184. -168.	94 01 10	Bumb				
CV(S_T_Time_*subject_n*Attac CV(S_T_Time_*subject_n*Valer CV(S_T_Time_*subject_n*Attac	ck_Ty*Session) nce_S*Session) ck_Ty*Valence_S*			-184. -168. -130.	94 01 10 Greenhouse	Huynh Feldt				
CV(S_T_Time_*subject_n*Attac CV(S_T_Time_*subject_n*Valer CV(S_T_Time_*subject_n*Attac	ck_Ty*Session) nce_S*Session) ck_Ty*Valence_S*			-184. -168. -130. Minimum	94 01 00 Greenhouse Geisser	Feldt				
CV(S_T_Time_*subject_n*Attac CV(S_T_Time_*subject_n*Valer CV(S_T_Time_*subject_n*Attac Greenhouse-Geisser Corrected	ck_Ty*Session) nce_S*Session) ck_Ty*Valence_S*		F	-184. -168. -130.	94 01 10 Greenhouse					
CV(S_T_Time_*subject_n*Attac CV(S_T_Time_*subject_n*Attac CV(S_T_Time_*subject_n*Attac Greenhouse-Geisser Corrected Source	ck_Ty*Session) nce_S*Session) ck_Ty*Valence_S*		F 58.45	-184. -168. -130. Minimum Epsilon	94 01 01 Greenhouse Geisser Epsilon	Feldt Epsilon				
CV(S_T_Time_*subject_n*Attac CV(S_T_Time_*subject_n*Valer CV(S_T_Time_*subject_n*Attac Greenhouse-Geisser Corrected Source Attack_Ty	ck_Ty*Session) nce_S*Session) ck_Ty*Valence_S*		58.45	-184. -168. -130. Minimum Epsilon P	94 01 10 Greenhouse Geisser Epsilon P 0.0000	Feldt Epsilon P 0.0000				
CV(S_T_Time_*subject_n*Attac CV(S_T_Time_*subject_n*Valer CV(S_T_Time_*subject_n*Attac Greenhouse-Geisser Corrected Source Attack_Ty S_T_Time_*Attack_Ty	ck_Ty*Session) nce_S*Session) ck_Ty*Valence_S*			-184. -168. -130. Minimum Epsilon P	94 01 10 Greenhouse Geisser Epsilon P	Feldt Epsilon P				
CV(S_T_Time_*subject_n*Attac CV(S_T_Time_*subject_n*Valer CV(S_T_Time_*subject_n*Attac Greenhouse-Geisser Corrected Source Attack_Ty	ck_Ty*Session) nce_S*Session) ck_Ty*Valence_S* d P-Values for N		58.45 1.22	-184. -168. -130. Minimum Epsilon P 0.0000 0.3150	Greenhouse Geisser Epsilon P 0.0000 0.3154	Feldt Epsilon P 0.0000 0.3114				
CV(S_T_Time_*subject_n*Attac CV(S_T_Time_*subject_n*Attac CV(S_T_Time_*subject_n*Attac Greenhouse-Geisser Corrected Source Attack_Ty S_T_Time_*Attack_Ty Attack_Ty*Valence_S	ck_Ty*Session) nce_S*Session) ck_Ty*Valence_S* d P-Values for N		58.45 1.22 0.60	-184. -168. -130. Minimum Epsilon P 0.0000 0.3150 0.4484	94 01 100 Greenhouse Geisser Epsilon P 0.0000 0.3154 0.5608	Feldt Epsilon P 0.0000 0.3114 0.5919				
CV(S_T_Time_*subject_n*Attac CV(S_T_Time_*subject_n*Attac CV(S_T_Time_*subject_n*Attac Greenhouse-Geisser Corrected Source Attack_Ty S_T_Time_*Attack_Ty Attack_Ty*Valence_S S_T_Time_*Attack_Ty*Valence_S	ck_Ty*Session) cc_S*Session) ck_Ty*Valence_S* d P-Values for N		58.45 1.22 0.60 0.62 0.45 1.16	-184. -168. -130. Minimum Epsilon P 0.0000 0.3150 0.4484 0.5493 0.5108 0.3338	94 01 100 Greenhouse Geisser Epsilon P 0.0000 0.3154 0.5608 0.6587	Feldt Epsilon P 0.0000 0.3114 0.5919 0.6891				
CV(S_T_Time_*subject_n*Attac CV(S_T_Time_*subject_n*Attac CV(S_T_Time_*subject_n*Attac Greenhouse-Geisser Corrected Source Attack_Ty S_T_Time_*Attack_Ty Attack_Ty*Valence_S S_T_Time_*Attack_Ty*Valence_Attack_Ty*Session S_T_Time_*Attack_Ty*Session Attack_Ty*Session Attack_Ty*Session	ck_Ty*Session) nce_S*Session) ck_Ty*Valence_S* d P-Values for N		58.45 1.22 0.60 0.62 0.45 1.16 3.34	-184 -168. -130. Minimum Epsilon P 0.0000 0.3150 0.4484 0.5493 0.5108 0.3338 0.0818	94 01 100 Greenhouse Geisser Epsilon P 0.0000 0.3154 0.5608 0.6587 0.6717 0.3433 M	reldt Epsilon p 0.0000 0.3114 0.5919 0.6891 0.7128 0.3414				
CV(S_T_Time_*subject_n*Attac CV(S_T_Time_*subject_n*Attac CV(S_T_Time_*subject_n*Attac Greenhouse-Geisser Corrected Source Attack_Ty S_T_Time_*Attack_Ty Attack_Ty*Valence_S S_T_Time_*Attack_Ty*Valence_Attack_Ty*Session S_T_Time_*Attack_Ty*Session	ck_Ty*Session) nce_S*Session) ck_Ty*Valence_S* d P-Values for N		58.45 1.22 0.60 0.62 0.45 1.16	-184. -168. -130. Minimum Epsilon P 0.0000 0.3150 0.4484 0.5493 0.5108 0.3338	94 01 100 Greenhouse Geisser Epsilon P 0.0000 0.3154 0.5608 0.6587 0.6717 0.3433	reldt Bpsilon P 0.0000 0.3114 0.5919 0.6891 0.7128 0.3414				
CV(S_T_Time_*subject_n*Attac CV(S_T_Time_*subject_n*Attac Greenhouse-Geisser Corrected Source Attack_Ty Attack_Ty Attack_Ty*Attack_Ty*Attack_Ty*Session S_T_Time_*Attack_Ty*Session S_T_Time_*Attack_Ty*Valence_S Attack_Ty*Session S_T_Time_*Attack_Ty*Valence_S*Session S_T_Time_*Attack_Ty*Valence_S*Session S_T_Time_*Attack_Ty*Valence_S*Session S_T_Time_*Attack_Ty*Valence_S*Session	ck_Ty*Session) nce_S*Session) ck_Ty*Valence_S* d P-Values for N _S _S		58.45 1.22 0.60 0.62 0.45 1.16 3.34	-184 -168. -130. Minimum Epsilon P 0.0000 0.3150 0.4484 0.5493 0.5108 0.3338 0.0818	94 01 100 Greenhouse Geisser Epsilon P 0.0000 0.3154 0.5608 0.6587 0.6717 0.3433 M	reldt Epsilon p 0.0000 0.3114 0.5919 0.6891 0.7128 0.3414				
CV(S_T_Time_*subject_n*Attac CV(S_T_Time_*subject_n*Attac CV(S_T_Time_*subject_n*Attac Greenhouse-Geisser Corrected Source Attack_Ty S_T_Time_*Attack_Ty Attack_Ty*Valence_S S_T_Time_*Attack_Ty*Valence_Attack_Ty*Session S_T_Time_*Attack_Ty*Session Attack_Ty*Session Attack_Ty*Session	ck_Ty*Session) nce_S*Session) ck_Ty*Valence_S* d P-Values for N _S _S		58.45 1.22 0.60 0.62 0.45 1.16 3.34	-184. -168. -130. Minimum Epsilon P 0.0000 0.3150 0.4484 0.5108 0.3388 0.0318	94 01 100 Greenhouse Geisser Epsilon P 0.0000 0.3154 0.5608 0.6587 0.6717 0.3433 M M Greenhouse	Feldt Epsilon P 0.0000 0.3114 0.5919 0.6891 0.7128 0.3414 M M Huynh				
CV(S_T_Time_*subject_n*Attac CV(S_T_Time_*subject_n*Attac Greenhouse-Geisser Corrected Source Attack_Ty Attack_Ty Attack_Ty*Attack_Ty*Attack_Ty*Session S_T_Time_*Attack_Ty*Session S_T_Time_*Attack_Ty*Valence_S Attack_Ty*Session S_T_Time_*Attack_Ty*Valence_S*Session S_T_Time_*Attack_Ty*Valence_S*Session S_T_Time_*Attack_Ty*Valence_S*Session S_T_Time_*Attack_Ty*Valence_S*Session	ck_Ty*Session) nce_S*Session) ck_Ty*Valence_S* d P-Values for N _S _S		58.45 1.22 0.60 0.62 0.45 1.16 3.34	-184130. Minimum Epsilon P 0.0000 0.3150 0.4484 0.5493 0.5108 0.3338 0.0818 0.3182	94 01 100 Greenhouse Geisser Epsilon P 0.0000 0.3154 0.5508 0.6587 0.6717 0.3433 M M Greenhouse Geisser	Feldt Epsilon p 0.0000 0.3114 0.5919 0.6891 0.7128 0.3414 M M Huynh Feldt	Mauchly's			
CV(S_T_Time_*subject_n*Attac CV(S_T_Time_*subject_n*Attac CV(S_T_Time_*subject_n*Attac Greenhouse-Geisser Corrected Source Attack_Ty S_T_Time_*Attack_Ty Attack_Ty*Valence_S S_T_Time_*Attack_Ty*Valence_Attack_Ty*Session S_T_Time_*Attack_Ty*Valence_S*Session S_T_Time_*Attack_Ty*Valence_Sphericity Assumption Tests Source	ck_Ty*Session) noe_S*Session) ck_Ty*Valence_S* d P-Values for N		58.45 1.22 0.60 0.62 0.45 1.16 3.34	-184. -168. -130. Minimum Epsilon P 0.0000 0.3150 0.4484 0.5108 0.3338 0.0818 0.3182	94 01 110 Greenhouse Geisser Epsilon P 0.0000 0.3154 0.5608 0.6587 0.6717 0.3433 M M Greenhouse Geisser Epsilon	Feldt Epsilon P 0.0000 0.3114 0.5919 0.6891 0.7128 0.3414 M M Huynh Feldt Epsilon	Statistic	Chi Sq	DF	p
CV(S_T_Time_*subject_n*Attac CV(S_T_Time_*subject_n*Attac CV(S_T_Time_*subject_n*Attac Greenhouse-Geisser Corrected Source Attack_Ty S_T_Time_*Attack_Ty Attack_Ty*Valence_S S_T_Time_*Attack_Ty*Valence_Attack_Ty*Session S_T_Time_*Attack_Ty*Valence_S'Session S_T_Time_*Attack_Ty*Valence_S'Session S_T_Time_*Attack_Ty*Valence_Sphericity Assumption Tests Source S_T_Time_*subject_n*Attack_T	ck_Ty*Session) nce_S*Session) ck_Ty*Valence_S* d P-Values for No		58.45 1.22 0.60 0.62 0.45 1.16 3.34	-184168130. Minimum Epsilon P 0.0000 0.3150 0.4484 0.5493 0.5108 0.3338 0.0818 0.3182 Minimum Epsilon 0.3330	94 01 100 Greenhouse Geisser Epsilon P 0.0000 0.3154 0.5508 0.6587 0.6717 0.3433 M M Greenhouse Geisser Epsilon 0.7122	Feldt Epsilon P 0.0000 0.3114 0.5919 0.6891 0.7128 0.3414 M M Huynh Feldt Epsilon 0.8707	Statistic 0.31345	22.88	5	0.0004
CV(S_T_Time_*subject_n*Attac CV(S_T_Time_*subject_n*Attac CV(S_T_Time_*subject_n*Attac Greenhouse-Geisser Corrected Source Attack_Ty S_T_Time_*Attack_Ty Attack_Ty*Valence_S S_T_Time_*Attack_Ty*Valence Attack_Ty*Valence_S*Session S_T_Time_*Attack_Ty*Session S_T_Time_*Attack_Ty*Valence_S Sphericity Assumption Tests Source S_T_Time_*subject_n*Attack_T	ck_Ty*Session) nce_S*Session) ck_Ty*Valence_S* d P-Values for N _S _S _S*Session Ty _Ty*Valence_S		58.45 1.22 0.60 0.62 0.45 1.16 3.34	-184130. Minimum Epsilon P 0.0000 0.3150 0.4484 0.5493 0.5108 0.3338 0.0818 0.3182 Minimum Epsilon 0.3333 0.3333 0.3333	94 01 100 Greenhouse Geisser Epsilon P 0.0000 0.3154 0.5608 0.6587 0.6717 0.3433 M M Greenhouse Geisser Epsilon 0.7122 0.6912	Feldt Bpsilon P 0.0000 0.3114 0.5919 0.6891 0.7128 0.3414 M M Huynh Feldt Epsilon 0.8707 0.8412	Statistic 0.31345 0.51742	22.88 12.99	5 5	0.0004 0.0234
CV(S_T_Time_*subject_n*Attac CV(S_T_Time_*subject_n*Attac CV(S_T_Time_*subject_n*Attac Greenhouse-Geisser Corrected Source Attack_Ty S_T_Time_*Attack_Ty Attack_Ty*Valence_S S_T_Time_*Attack_Ty*Valence_Attack_Ty*Session S_T_Time_*Attack_Ty*Valence_S*Session S_T_Time_*Attack_Ty*Valence_Str_Time_*Attack_Ty*Valence_Str_Time_*Attack_Ty*Valence_Str_Time_*Subject_n*Attack_TS_T_Time_*subject_n*Atta	ck_Ty*Session) noe_S*Session) ck_Ty*Valence_S* d P-Values for N S S*Session Ty Ty Ty Ty Ty Ty*Valence_S Ty*Session	onsphericity	58.45 1.22 0.60 0.62 0.45 1.16 3.34	-184, -168130. Minimum Epsilon P 0.0000 0.3150 0.4484 0.5493 0.5108 0.3338 0.0818 0.3182 Minimum Epsilon 0.3333 0.3333 0.3333	94 01 100 Greenhouse Geisser Epsilon P 0.0000 0.3154 0.5608 0.6587 0.6717 0.3433 M M Greenhouse Geisser Epsilon 0.7122 0.6912 0.7768	Feldt Epsilon P 0.0000 0.3114 0.5919 0.6891 0.7128 0.3414 M M Huynh Feldt Epsilon 0.8707 0.8412 0.9628	Statistic 0.31345 0.51742 0.65970	22.88 12.99 8.20	5 5 5	0.0004 0.0234 0.1454
CV(S_T_Time_*subject_n*Attac CV(S_T_Time_*subject_n*Attac CV(S_T_Time_*subject_n*Attac Greenhouse-Geisser Corrected Source Attack_Ty S_T_Time_*Attack_Ty Attack_Ty*Valence_S S_T_Time_*Attack_Ty*Valence Attack_Ty*Valence_S*Session S_T_Time_*Attack_Ty*Session S_T_Time_*Attack_Ty*Valence_S Sphericity Assumption Tests Source S_T_Time_*subject_n*Attack_T	ck_Ty*Session) noe_S*Session) ck_Ty*Valence_S* d P-Values for N S S*Session Ty Ty Ty Ty Ty Ty*Valence_S Ty*Session	onsphericity	58.45 1.22 0.60 0.62 0.45 1.16 3.34	-184130. Minimum Epsilon P 0.0000 0.3150 0.4484 0.5493 0.5108 0.3338 0.0818 0.3182 Minimum Epsilon 0.3333 0.3333 0.3333	94 01 100 Greenhouse Geisser Epsilon P 0.0000 0.3154 0.5608 0.6587 0.6717 0.3433 M M Greenhouse Geisser Epsilon 0.7122 0.6912	Feldt Bpsilon P 0.0000 0.3114 0.5919 0.6891 0.7128 0.3414 M M Huynh Feldt Epsilon 0.8707 0.8412	Statistic 0.31345 0.51742	22.88 12.99	5 5	0.0004 0.0234
CV(S_T_Time_*subject_n*Attac CV(S_T_Time_*subject_n*Attac CV(S_T_Time_*subject_n*Attac Greenhouse-Geisser Corrected Source Attack_Ty S_T_Time_*Attack_Ty Attack_Ty*Valence_S S_T_Time_*Attack_Ty*Valence Attack_Ty*Session S_T_Time_*Attack_Ty*Valence Sphericity Assumption Tests Source S_T_Time_*subject_n*Attack_T S_T_Time_*subject_n*Attack_T S_T_Time_*subject_n*Attack_T S_T_Time_*subject_n*Attack_T S_T_Time_*subject_n*Attack_T S_T_Time_*subject_n*Attack_T S_T_Time_*subject_n*Attack_T S_T_Time_*subject_n*Attack_T S_T_Time_*subject_n*Attack_T Box's Test for Equality of C	ck_Ty*Session) noe_S*Session) ck_Ty*Valence_S* d P-Values for N S S*Session Ty Ty Ty Ty*Valence_S Ty*Session Ty Ty*Session Ty*Session Ty*Valence_S Ty*Session Ty*Valence_S Ty*Session Ty*Valence_S*Ses	onsphericity sion	58.45 1.22 0.60 0.62 0.45 1.16 3.34	-184130. Minimum Epsilon 0.0000 0.3150 0.4484 0.5493 0.5108 0.3338 0.0818 0.3182 Minimum Epsilon 0.3333 0.3333 0.3333 0.3333	94 01 100 Greenhouse Geisser Epsilon P 0.0000 0.3154 0.5508 0.6587 0.6717 0.3433 M M Greenhouse Geisser Epsilon 0.7122 0.6912 0.7768 M	Feldt Bpsilon P 0.0000 0.3114 0.5919 0.6891 0.7128 0.3414 M M Huynh Feldt Epsilon 0.8707 0.8412 0.9628 M	Statistic 0.31345 0.51742 0.65970 M	22.88 12.99 8.20 M	5 5 5 5	0.0004 0.0234 0.1454
CV(S_T_Time_*subject_n*Attac CV(S_T_Time_*subject_n*Attac Greenhouse-Geisser Corrected Source Attack_Ty Attack_Ty Attack_Ty*Valence_S S_T_Time_*Attack_Ty*Valence_Attack_Ty*Session S_T_Time_*Attack_Ty*Valence_S T_Time_*Attack_Ty*Valence_S Sphericity_Assumption_Tests Source S_T_Time_*subject_n*Attack_TS_TTime_*subject_n*Attack_TS_TTIME_*subject_n*Attack_TS_TTIME_*subject_n*Attack_TS_TTIME_*subject_n*Attack_TS_TTIME_*subject_n*Attack_TS_TTIME_*subject_n*Attack_TS_TTIME_*subject_n*Attack_TS_TTIME_*subject_n*Attack_TS_TTIME_*subject_n*Attack_TS_TTIME_*subject_n*Attack_TS_TTIME_*subject_n*Attack_TS_TTIME_*subject_n*Attack_TS_TTIME_*subject_n*Attack_TS_TTIME_*subject_n*Attack_TS_TTIME_*subject_n*Attack_TS_TTIME_*subject_n*Attack_TS_TTIME_*subject_n*Attack_TS_TTIME_*subject_n*Attack_TS_TTIME_*subject_n*Attack_TS_TTIME_*subject_n*Attack_TS_TTIME_*subject_n*At	ck_Ty*Session) noe_S*Session) ck_Ty*Valence_S* d P-Values for N S S*Session Ty Ty*Valence_S Ty*Session Ty*Valence_S Ty*Session Ty*Valence_S Ty*Session Ty*Valence_S*Ses: Covariance Matri	onsphericity sion	58.45 1.22 0.60 0.62 0.45 1.16 3.34	-184, -168, -130. Minimum Epsilon P 0.0000 0.3150 0.4484 0.5493 0.5108 0.3338 0.0818 0.3182 Minimum Epsilon 0.3333 0.3333 0.3333 0.3333	94 01 100 Greenhouse Geisser Epsilon P 0.0000 0.3154 0.5608 0.6587 0.6717 0.3433 M M Greenhouse Geisser Epsilon 0.7122 0.6912 0.7768	Feldt Epsilon P 0.0000 0.3114 0.5919 0.6891 0.7128 0.3414 M M Huynh Feldt Epsilon 0.8707 0.8412 0.9628	Statistic 0.31345 0.51742 0.65970	22.88 12.99 8.20	5 5 5 5	0.0004 0.0234 0.1454
CV(S_T_Time_*subject_n*Attac CV(S_T_Time_*subject_n*Valer CV(S_T_Time_*subject_n*Attac Greenhouse-Geisser Corrected Source Attack_Ty S_T_Time_*Attack_Ty Attack_Ty*Valence_S S_T_Time_*Attack_Ty*Valence_Attack_Ty*Session S_T_Time_*Attack_Ty*Valence_S*Session S_T_Time_*Attack_Ty*Valence_Str_Time_*Attack_Ty*Valence_ST_Time_*Session S_T_Time_*Subject_n*Attack_TS_T_Time_*subject_n*Attack_TS_T_Tim	ck_Ty*Session) nce_S*Session) ck_Ty*Valence_S* d P-Values for N S S*Session Ty Ty*Valence_S Ty*Session Ty*Valence_S Covariance Matri	onsphericity sion	58.45 1.22 0.60 0.62 0.45 1.16 3.34	-184130. Minimum Epsilon P 0.0000 0.3150 0.4484 0.5493 0.5108 0.3338 0.0818 0.3182 Minimum Epsilon 0.3333 0.3333 0.3333 0.3333	94 01 100 Greenhouse Geisser Epsilon P 0.0000 0.3154 0.5508 0.6587 0.6717 0.3433 M M Greenhouse Geisser Epsilon 0.7122 0.6912 0.7768 M	Feldt Bpsilon P 0.0000 0.3114 0.5919 0.6891 0.7128 0.3414 M M Huynh Feldt Epsilon 0.8707 0.8412 0.9628 M	Statistic 0.31345 0.51742 0.65970 M	22.88 12.99 8.20 M	5 5 5 5	0.0004 0.0234 0.1454
CV(S_T_Time_*subject_n*Attac CV(S_T_Time_*subject_n*Attac CV(S_T_Time_*subject_n*Attac Greenhouse-Geisser Corrected Source Attack_Ty Attack_Ty Attack_Ty*Valence_S S_T_Time_*Attack_Ty*Valence_Attack_Ty*Valence_Attack_Ty*Session S_T_Time_*Attack_Ty*Valence_S*Session S_T_Time_*Attack_Ty*Valence_Stack_Ty*Valence_Stack_Ty*Valence_Stack_Ty*Valence_Stack_Ty*Valence_Stack_Ty*Valence_Stack_Ty*Valence_Stack_Ty*Valence_Stack_Ty*Valence_Stack_Ty*Valence_Stack_Ty*Valence_Stack_Ty*Valence_Stack_Ty*Valence_Stack_Ty*Valence_Stack_Ty*Valence_Stack_Ty*Valence_Stack_Ty*Valence_Ty*Valence_Stack_Ty*Valence_Ty*Valence_Stack_Ty*Valence_Ty*Valence_Stack_Ty*Valence	ck_Ty*Session) noe_S*Session) ck_Ty*Valence_S* d P-Values for N S S*Session Ty Ty*Valence_S Ty*Session Ty*Valence_S Ty*Session Ty*Valence_S*Ses: Covariance Matric Ty Ty*Valence_S Ty*Yalence_S Ty*Yalence_S Ty*Yalence_S	onsphericity sion	58.45 1.22 0.60 0.62 0.45 1.16 3.34	-184, -168, -130. Minimum Epsilon P 0.0000 0.3150 0.4484 0.5108 0.3388 0.05188 0.3182 Minimum Epsilon 0.3333 0.3333 0.3333 0.3333	94 01 100 Greenhouse Geisser Epsilon P 0.0000 0.3154 0.5508 0.6587 0.6717 0.3433 M M Greenhouse Geisser Epsilon 0.7122 0.6912 0.7768 M	Feldt Bpsilon P 0.0000 0.3114 0.5919 0.6891 0.7128 0.3414 M M Huynh Feldt Epsilon 0.8707 0.8412 0.9628 M	Statistic 0.31345 0.51742 0.65970 M	22.88 12.99 8.20 M	5 5 5 5	0.0004 0.0234 0.1454
CV(S_T_Time_*subject_n*Attac CV(S_T_Time_*subject_n*Attac CV(S_T_Time_*subject_n*Attac Greenhouse-Geisser Corrected Source Attack_Ty S_T_Time_*Attack_Ty Attack_Ty*Valence_S S_T_Time_*Attack_Ty*Valence_Attack_Ty*Session S_T_Time_*Attack_Ty*Valence_S Sphericity Assumption Tests Source S_T_Time_*subject_n*Attack_TS_T_Time_*subject_n*Atta	ck_Ty*Session) nec_S*Session) ck_Ty*Valence_S* d P-Values for N S S*Session Fy Ty*Valence_S Ty*Session Ty*Valence_S Covariance Matri Ty Ty*Valence_S	onsphericity sion	58.45 1.22 0.60 0.62 0.45 1.16 3.34	-184, -168130. Minimum Epsilon P 0.0000 0.3150 0.4484 0.5493 0.5108 0.3338 0.0818 0.3182 Minimum Epsilon 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333	94 01 100 Greenhouse Geisser Epsilon P 0.0000 0.3154 0.5508 0.6587 0.6717 0.3433 M M Greenhouse Geisser Epsilon 0.7122 0.6912 0.7768 M	Feldt Bpsilon P 0.0000 0.3114 0.5919 0.6891 0.7128 0.3414 M M Huynh Feldt Epsilon 0.8707 0.8412 0.9628 M	Statistic 0.31345 0.51742 0.65970 M	22.88 12.99 8.20 M	5 5 5 5	0.0004 0.0234 0.1454
CV(S_T_Time_*subject_n*Attac CV(S_T_Time_*subject_n*Attac CV(S_T_Time_*subject_n*Attac Greenhouse-Geisser Corrected Source Attack_Ty Attack_Ty Attack_Ty*Valence_S S_T_Time_*Attack_Ty*Valence_Attack_Ty*Valence_Attack_Ty*Session S_T_Time_*Attack_Ty*Valence_S*Session S_T_Time_*Attack_Ty*Valence_Stack_Ty*Valence_Stack_Ty*Valence_Stack_Ty*Valence_Stack_Ty*Valence_Stack_Ty*Valence_Stack_Ty*Valence_Stack_Ty*Valence_Stack_Ty*Valence_Stack_Ty*Valence_Stack_Ty*Valence_Stack_Ty*Valence_Stack_Ty*Valence_Stack_Ty*Valence_Stack_Ty*Valence_Stack_Ty*Valence_Stack_Ty*Valence_Ty*Valence_Stack_Ty*Valence_Ty*Valence_Stack_Ty*Valence_Ty*Valence_Stack_Ty*Valence	ck_Ty*Session) nec_S*Session) ck_Ty*Valence_S* d P-Values for N S S*Session Fy Ty*Valence_S Ty*Session Ty*Valence_S Covariance Matri Ty Ty*Valence_S	onsphericity sion	58.45 1.22 0.60 0.62 0.45 1.16 3.34	-184, -168, -130. Minimum Epsilon P 0.0000 0.3150 0.4484 0.5108 0.3388 0.05188 0.3182 Minimum Epsilon 0.3333 0.3333 0.3333 0.3333	94 01 100 Greenhouse Geisser Epsilon P 0.0000 0.3154 0.5508 0.6587 0.6717 0.3433 M M Greenhouse Geisser Epsilon 0.7122 0.6912 0.7768 M	Feldt Bpsilon P 0.0000 0.3114 0.5919 0.6891 0.7128 0.3414 M M Huynh Feldt Epsilon 0.8707 0.8412 0.9628 M	Statistic 0.31345 0.51742 0.65970 M	22.88 12.99 8.20 M	5 5 5 5	0.0004 0.0234 0.1454

Statistix 10.0 3/5/2014, 9:41:53 AM

Repeated Measures AOV Table for REL_SCORE

Source DF SS MS F

No_Prb~01 (A)	2	1.466E+09	7.328E+08	2.22	0.1336					
subject_n (B)										
Error A*B	21	6.935E+09	3.303E+08							
Attack_Ty (C)	3	3.461E+10	1.154E+10	43.45	0.0000					
A*C Error A*B*C	6 63	2.810E+09 1.672E+10	4.683E+08 2.655E+08	1.76	0.1210					
Valence_S (D)	1	7.283E+08	7.283E+08	3.52	0.0744					
A*D	2	1.080E+08	5.398E+07	0.26	0.7726					
Error A*B*D	21	4.339E+09	2.066E+08							
Session (E)	1	2.850E+09	2.850E+09	16.15	0.0006					
A*E	2	2.515E+09	1.257E+09	7.12	0.0044					
Error A*B*E	21	3.707E+09	1.765E+08							
C*D	3	8.500E+07	2.833E+07	0.13	0.9405					
A*C*D	6	2.320E+08	3.866E+07	0.18	0.9812					
Error A*B*C*D C*E	63 3	1.349E+10	2.142E+08 1.639E+08	0.64	0.5931					
A*C*E	6	4.916E+08 1.822E+09	3.037E+08	1.18	0.3269					
Error A*B*C*E	63	1.617E+10	2.567E+08	1.10	0.3203					
D*E	1	5.784E+08	5.784E+08	2.36	0.1395					
A*D*E	2	4.299E+08	2.150E+08	0.88	0.4309					
Error A*B*D*E	21	5.149E+09	2.452E+08							
C*D*E	3	1.331E+09	4.436E+08	3.85	0.0135					
A*C*D*E	6	8.491E+08	1.415E+08	1.23	0.3035					
Error A*B*C*D*E	63	7.254E+09	1.151E+08							
Total	383									
Note: SS are marginal (type	TTT) sums of son	ares								
noce: bb dre marginar (c)pe	III) Damb of ba	tar co								
Grand Mean				-75	65.1					
CV(No_Prb~01*subject_n)					0.22					
CV(No_Prb~01*subject_n*Attac	k_Ty)				5.37					
CV(No_Prb~01*subject_n*Valen					0.01					
CV(No_Prb~01*subject_n*Sessi					5.62					
CV(No_Prb~01*subject_n*Attac					1.80					
CV(No_Prb~01*subject_n*Attac CV(No_Prb~01*subject_n*Valen	ce C*Cession)				6.99					
CV(No_Prb~01*subject_n*Attac		Session)			1.84					
		,								
Greenhouse-Geisser Corrected	P-Values for No	onsphericity								
					Greenhouse	Huynh				
				Minimum	Geisser	Feldt				
			_	Epsilon	Epsilon	Epsilon P				
Source			F 43.45	0.0000	P 0.0000	0.0000				
Attack_Ty No_Prb~01*Attack_Ty			1.76	0.1958	0.1480	0.1315				
Attack_Ty*Valence_S			0.13	0.7197	0.8944	0.9271				
No_Prb~01*Attack_Ty*Valence_	S		0.18	0.8361	0.9577	0.9749				
Attack_Ty*Session			0.64	0.4333	0.5511	0.5821				
No_Prb~01*Attack_Ty*Session			1.18	0.3260	0.3313	0.3283				
Attack_Ty*Valence_S*Session			3.85	0.0630	M	M				
No_Prb~01*Attack_Ty*Valence_	S*Session		1.23	0.3128	М	M				
Sphericity Assumption Tests										
					Greenhouse	Huumh				
				Minimum	Greenhouse Geisser	Huynh Feldt	Mauchly's			
Source				Minimum Epsilor	Geisser	Feldt	Mauchly's Statistic	Chi Sq	DF	P
Source	'y			Minimum Epsilor 0.3333	Geisser Epsilon		Mauchly's Statistic 0.34152	Chi sq 21.19	DF 5	P 0.0007
Source No_Prb-01*subject_n*Attack_T No_Prb~01*subject_n*Attack_T	y*Valence_S			Epsilor 0.3333 0.3333	Geisser Epsilon 0.7222 0.7361	Feldt Epsilon 0.8849 0.9046	Statistic 0.34152 0.58294	21.19 10.64	5 5	0.0007
Source No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T	'y*Valence_S 'y*Session			Epsilor 0.3333 0.3333 0.3333	Geisser Epsilon 0.7222 0.7361 0.7531	Feldt Epsilon 0.8849 0.9046 0.9288	Statistic 0.34152 0.58294 0.62331	21.19 10.64 9.32	5 5 5	0.0007 0.0589 0.0969
Source No_Prb-01*subject_n*Attack_T No_Prb~01*subject_n*Attack_T	'y*Valence_S 'y*Session	ion		Epsilor 0.3333 0.3333	Geisser Epsilon 0.7222 0.7361 0.7531	Feldt Epsilon 0.8849 0.9046	Statistic 0.34152 0.58294	21.19 10.64	5 5	0.0007
Source No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T	'y*Valence_S 'y*Session 'y*Valence_S*Sess			Epsilor 0.3333 0.3333 0.3333	Geisser Epsilon 0.7222 0.7361 0.7531	Feldt Epsilon 0.8849 0.9046 0.9288	Statistic 0.34152 0.58294 0.62331	21.19 10.64 9.32	5 5 5	0.0007 0.0589 0.0969
Source No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T Box's Test for Equality of C	'y*Valence_S 'y*Session 'y*Valence_S*Sess			Epsilor 0.3333 0.3333 0.3333	Geisser Epsilon 0.7222 0.7361 0.7531	Feldt Epsilon 0.8849 0.9046 0.9288 M	Statistic 0.34152 0.58294 0.62331 M	21.19 10.64 9.32 M	5 5 5 5	0.0007 0.0589 0.0969
Source No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T Box's Test for Equality of C Source	y*Valence_S y*Session y*Valence_S*Sess ovariance Matric			Epsilor 0.3333 0.3333 0.3333 0.3333	Geisser Epsilon 0.7222 0.7361 0.7531	Feldt Epsilon 0.8849 0.9046 0.9288	Statistic 0.34152 0.58294 0.62331	21.19 10.64 9.32	5 5 5 5	0.0007 0.0589 0.0969
Source No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T Box's Test for Equality of C Source No_Prb-01*subject_n*Attack_T	y*Valence_S y*Session y*Valence_S*Sess ovariance Matric			Epsilor 0.333 0.333 0.333 0.333	Geisser Epsilon 0.7222 0.7361 0.7531	Feldt Epsilon 0.8849 0.9046 0.9288 M	Statistic 0.34152 0.58294 0.62331 M	21.19 10.64 9.32 M	5 5 5 5	0.0007 0.0589 0.0969
Source No_prb-01*subject_n*Attack_T No_prb-01*subject_n*Attack_T No_prb-01*subject_n*Attack_T Box's Test for Equality of O Source No_prb-01*subject_n*Attack_T No prb-01*subject_n*Attack_T	y*Valence_S y*Session y*Valence_S*Sess Ovariance Matric y y*Valence_S			Epsilor 0.3333 0.3333 0.3333 0.3333	Geisser Epsilon 0.7222 0.7361 0.7531	Feldt Epsilon 0.8849 0.9046 0.9288 M	Statistic 0.34152 0.58294 0.62331 M	21.19 10.64 9.32 M	5 5 5 5	0.0007 0.0589 0.0969
Source No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T Box's Test for Equality of C Source No_Prb-01*subject_n*Attack_T	y*Valence_S y*Session y*Valence_S*Sess covariance Matric y y*Valence_S y*Session	ces		Epsilor	Geisser Epsilon 0.7222 0.7361 0.7531	Feldt Epsilon 0.8849 0.9046 0.9288 M	Statistic 0.34152 0.58294 0.62331 M	21.19 10.64 9.32 M	5 5 5 5	0.0007 0.0589 0.0969
Source No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T Box's Test for Equality of C Source No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T	y*Valence_S y*Session y*Valence_S*Sess covariance Matric y y*Valence_S y*Session	ces		Epsilor 0.3333 0.3333 0.3333 Box's M M M	Geisser Epsilon 0.7222 0.7361 0.7531	Feldt Epsilon 0.8849 0.9046 0.9288 M	Statistic 0.34152 0.58294 0.62331 M	21.19 10.64 9.32 M	5 5 5 5	0.0007 0.0589 0.0969
Source No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T Box's Test for Equality of C Source No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T	y*Valence_S y*Session y*Valence_S*Sess covariance Matric y y*Valence_S y*Session	ces		Epsilor 0.3333 0.3333 0.3333 Box's M M M	Geisser Epsilon 0.7222 0.7361 0.7531	Feldt Epsilon 0.8849 0.9046 0.9288 M	Statistic 0.34152 0.58294 0.62331 M	21.19 10.64 9.32 M	5 5 5 5	0.0007 0.0589 0.0969
Source No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T Box's Test for Equality of C Source No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T	y*Valence_S y*Session y*Valence_S*Sess covariance Matric y y*Valence_S y*Session	ces		Epsilor 0.3333 0.3333 0.3333 Box's M M M	Geisser Epsilon 0.7222 0.7361 0.7531	Feldt Epsilon 0.8849 0.9046 0.9288 M	Statistic 0.34152 0.58294 0.62331 M	21.19 10.64 9.32 M	5 5 5 5	0.0007 0.0589 0.0969
Source No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T Box's Test for Equality of C Source No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T	y*Valence_S y*Session y*Valence_S*Sess covariance Matric y y*Valence_S y*Session	sion		Epsilor 0.3333 0.3333 0.3333 Box's M M M	Geisser Epsilon 0.7222 0.7361 0.7531	Feldt Epsilon 0.8849 0.9046 0.9288 M	Statistic 0.34152 0.58294 0.62331 M	21.19 10.64 9.32 M	5 5 5 5	0.0007 0.0589 0.0969
Source No_prb-01*subject_n*Attack_T No_prb-01*subject_n*Attack_T No_prb-01*subject_n*Attack_T No_prb-01*subject_n*Attack_T Box's Test for Equality of C Source No_prb-01*subject_n*Attack_T No_prb-01*subject_n*Attack_T No_prb-01*subject_n*Attack_T	y*Valence_S y*Session y*Valence_S*Sess covariance Matric y y*Valence_S y*Session	sion	014, 10:10:19 AM	Epsilor 0.3333 0.3333 0.3333 Box's M M M	Geisser Epsilon 0.7222 0.7361 0.7531	Feldt Epsilon 0.8849 0.9046 0.9288 M	Statistic 0.34152 0.58294 0.62331 M	21.19 10.64 9.32 M	5 5 5 5	0.0007 0.0589 0.0969
Source No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T Box's Test for Equality of C Source No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T	y*Valence_S y*Ysession y*Valence_S*Sess tovariance Matric y y*Valence_S y*Session y*Valence_S*Sess	sion	014, 10:10:19 AM	Epsilor 0.3333 0.3333 0.3333 Box's M M M	Geisser Epsilon 0.7222 0.7361 0.7531	Feldt Epsilon 0.8849 0.9046 0.9288 M	Statistic 0.34152 0.58294 0.62331 M	21.19 10.64 9.32 M	5 5 5 5	0.0007 0.0589 0.0969
Source No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T Source No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T Source Statistix 10.0 Repeated Measures AOV Table	y*Valence_S y*Ysession y*Valence_S*Sess tovariance Matric y y*Valence_S y*Session y*Valence_S*Sess	sion	014, 10:10:19 AM MS	Epsilor 0.3333 0.3333 0.3333 Box's M M M	Geisser Epsilon 0.7222 0.7361 0.7531	Feldt Epsilon 0.8849 0.9046 0.9288 M	Statistic 0.34152 0.58294 0.62331 M	21.19 10.64 9.32 M	5 5 5 5	0.0007 0.0589 0.0969
Source No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T Box's Test for Equality of C Source No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T Source No_Prb-01*subject_n*Attack_T Source Source Source No_Prb-01*subject_n*Attack_T Source	y*Valence_S y*Session y*Valence_S*Sess tovariance Matric y y*Valence_S y*Session y*Valence_S*Sess for REL_SCORE	sion 3/5/20		Epsilor 0.3333 0.3333 0.3333 0.3333 0.3333	Geisser Bpsilon 0.7222 0.7361 0.7531 M	Feldt Epsilon 0.8849 0.9046 0.9288 M	Statistic 0.34152 0.58294 0.62331 M	21.19 10.64 9.32 M	5 5 5 5	0.0007 0.0589 0.0969
Source No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T Box's Test for Equality of C Source No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T Source Source ToT_s_A_L (A) Subject_n (B)	y*Valence_S y*Vsession y*Valence_S*Sess covariance Matric y y*Valence_S y*Vsession y*Valence_S*Sess for REL_SCORE DF 2	sion 3/5/20 \$8 1.041E+09	MS 5.203E+08	Epsilor 0.333; 0	Geisser Bpsilon 0.7222 0.7361 0.7531 M F DF1	Feldt Epsilon 0.8849 0.9046 0.9288 M	Statistic 0.34152 0.58294 0.62331 M	21.19 10.64 9.32 M	5 5 5 5	0.0007 0.0589 0.0969
Source No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T Box's Test for Equality of C Source No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T Source To_E_A_L (A) Subject_n (B) Error A*B	y*Valence_S y*Session y*Valence_S*Sess tovariance Matric y y*Valence_S y*Session y*Valence_S*Sess for REL_SCORE DF 2 27	sion 3/5/20 SS 1.041E+09 1.084E+10	MS 5.203E+08 4.013E+08	Epsilor 0.3333 0.3330 0.3300 0.3300 0.3300 0.3000 0.3000 0.3000 0	Geisser Bpsilon 0.7222 0.7361 0.7531 M F DF1	Feldt Epsilon 0.8849 0.9046 0.9288 M	Statistic 0.34152 0.58294 0.62331 M	21.19 10.64 9.32 M	5 5 5 5	0.0007 0.0589 0.0969
Source No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T Box's Test for Equality of O Source No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T Source Source ToT_E_A_L (A) Subject_n (B) Error A*B Attack_T (C)	y*Valence_S y*Vsession y*Vsession y*Valence_S*Sess tovariance Matric y y*Valence_S y*Vsession y*Vsession y*Valence_S*Sess for REL_SCORE DF 2 27 3	sion 3/5/20 \$8 1.041E+09 1.084E+10 6.191E+10	MS 5.203E+08 4.013E+08 2.064E+10	Epsilor 0.333; 0	Geisser Bpsilon 0.7222 0.7361 0.7531 M F DF1	Feldt Epsilon 0.8849 0.9046 0.9288 M	Statistic 0.34152 0.58294 0.62331 M	21.19 10.64 9.32 M	5 5 5 5	0.0007 0.0589 0.0969
Source No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T Box's Test for Equality of C Source No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T Source To_Fab_101*subject_n*Attack_T Statistix 10.0 Repeated Measures AOV Table : Source ToT_E_A_L (A) subject_n (B) Error A*B Attack_TY (C) A*C	y*Valence_S y*Session y*Valence_S*Sess tovariance Matric y y*Valence_S y*Session y*Valence_S*Session y*Valence_S*Session for REL_SCORE DF 2 27 3 6	\$5. 1.041E+09 1.084E+10 6.191E+10 3.770E+09	MS 5.203E+08 4.013E+08 2.064E+10 6.283E+08	Epsilor 0.3333 0.3330 0.3300 0.3300 0.3300 0.3000 0.3000 0.3000 0	Geisser Bpsilon 0.7222 0.7361 0.7531 M F DF1	Feldt Epsilon 0.8849 0.9046 0.9288 M	Statistic 0.34152 0.58294 0.62331 M	21.19 10.64 9.32 M	5 5 5 5	0.0007 0.0589 0.0969
Source No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T Box's Test for Equality of C Source No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T No_Prb-01*subject_n*Attack_T Source Statistix 10.0 Repeated Measures AOV Table: Source ToT_E_A_L (A) subject_n (B) Error A*B Attack_Ty (C)	y*Valence_S y*Vsession y*Vsession y*Valence_S*Sess tovariance Matric y y*Valence_S y*Vsession y*Vsession y*Valence_S*Sess for REL_SCORE DF 2 27 3	sion 3/5/20 \$8 1.041E+09 1.084E+10 6.191E+10	MS 5.203E+08 4.013E+08 2.064E+10	Epsilor 0.333; 0	Geisser Bpsilon 0.7222 0.7361 0.7531 M F DF1	Feldt Epsilon 0.8849 0.9046 0.9288 M	Statistic 0.34152 0.58294 0.62331 M	21.19 10.64 9.32 M	5 5 5 5	0.0007 0.0589 0.0969

Valence_S (D)	1	2.461E+08	2.461E+08	1.19	0.2844						
A*D	2	3.341E+08	1.671E+08	0.81	0.4555						
Error A*B*D	27	5.570E+09	2.063E+08								
Session (E)	1	4.912E+09	4.912E+09	17.57	0.0003						
A*E	2	2.025E+07	1.012E+07	0.04	0.9645						
Error A*B*E C*D	27	7.550E+09 9.047E+07	2.796E+08 3.016E+07	0.16	0.9246						
A*C*D	3 6	1.715E+09	2.858E+08	0.16 1.49	0.9246						
Error A*B*C*D	81	1.552E+10	1.916E+08	1.17	0.1515						
C*E	3	4.267E+08	1.422E+08	0.51	0.6793						
A*C*E	6	1.344E+09	2.240E+08	0.80	0.5753						
Error A*B*C*E	81	2.277E+10	2.812E+08								
D*E	1	9.832E+08	9.832E+08	4.29	0.0480						
A*D*E	2	8.610E+08	4.305E+08	1.88	0.1722						
Error A*B*D*E	27	6.187E+09	2.291E+08								
C*D*E A*C*D*E	3 6	1.158E+09 1.503E+09	3.861E+08 2.504E+08	3.14 2.04	0.0298 0.0703						
Error A*B*C*D*E	81	9.968E+09	1.231E+08	2.04	0.0703						
Total	479	1.796E+11	1.2312100								
Grand Mean					369.0						
CV(ToT_E_A_L*subject_n)					54.59						
CV(ToT_E_A_L*subject_n*Attac					04.29						
CV(ToT_E_A_L*subject_n*Valen					32.53						
CV(ToT_E_A_L*subject_n*Sessi					12.51						
CV(ToT_E_A_L*subject_n*Attac CV(ToT_E_A_L*subject_n*Attac	ck_ly*valence_5)			-1	75.89 13.08						
CV(ToT_E_A_L*subject_n*Valen					92.36						
CV(ToT_E_A_L*subject_n*Attac	ck Ty*Valence S*S	ession)			10.97						
Greenhouse-Geisser Corrected	d P-Values for No	nsphericity									
				***	Greenhouse		Huynh				
				Minimum Epsilon	Geisser Epsilon		Feldt				
Source			F	Epsiion	Epsiion		Epsilon P				
Attack_Ty			79.85	0.0000	0.0000		0.0000				
ToT_E_A_L*Attack_Ty			2.43	0.1069	0.0505		0.0401				
Attack_Ty*Valence_S			0.16	0.6947	0.9040		0.9246				
ToT_E_A_L*Attack_Ty*Valence_	_S		1.49	0.2429	0.2009		0.1913				
Attack_Ty*Session			0.51	0.4830	0.6158		0.6439				
ToT_E_A_L*Attack_Ty*Session			0.80	0.4611	0.5384		0.5545				
Attack_Ty*Valence_S*Session ToT_E_A_L*Attack_Ty*Valence_	0+0		3.14 2.04	0.0878 0.1502	M M		M M				
TOT_E_A_L"ACCACK_TY"VATERCE_	_5~Session		2.04	0.1502	M		M				
Sphericity Assumption Tests											
Sphericity Assumption Tests					Greenhouse		Huynh				
				Minimu	n Geisser		Feldt	Mauchly's			
Source				Epsilo	n Geisser n Epsilon		Feldt Epsilon	Statistic	:	Chi Sq	DF P
Source ToT_E_A_L*subject_n*Attack_T				Epsilo: 0.333	n Geisser n Epsilon 3 0.7501		Feldt Epsilon 0.8823	Statistic 0.42135	: ;	22.23	5 0.0005
Source ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T	Ty*Valence_S			Epsilo: 0.333 0.333	n Geisser n Epsilon 3 0.7501 3 0.8738		Feldt Epsilon 0.8823 1.0000	Statistic 0.42135 0.80788		22.23 5.49	5 0.0005 5 0.3593
Source ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T	Ty*Valence_S Ty*Session	ion		Epsilo: 0.333 0.333 0.333	m Geisser n Epsilon 3 0.7501 3 0.8738 3 0.7048		Feldt Epsilon 0.8823 1.0000 0.8228	Statistic 0.42135 0.80788 0.55731	: :	22.23 5.49 15.04	5 0.0005 5 0.3593 5 0.0102
Source ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T	Ty*Valence_S Ty*Session	ion		Epsilo: 0.333 0.333	m Geisser n Epsilon 3 0.7501 3 0.8738 3 0.7048		Feldt Epsilon 0.8823 1.0000	Statistic 0.42135 0.80788	: :	22.23 5.49	5 0.0005 5 0.3593
Source ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T	Ty*Valence_S Ty*Session Ty*Valence_S*Sess			Epsilo: 0.333 0.333 0.333	m Geisser n Epsilon 3 0.7501 3 0.8738 3 0.7048		Feldt Epsilon 0.8823 1.0000 0.8228 M	Statistic 0.42135 0.80788 0.55731	: :	22.23 5.49 15.04 M	5 0.0005 5 0.3593 5 0.0102 5 M
Source ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T	Ty*Valence_S Ty*Session Ty*Valence_S*Sess			Epsilo: 0.333 0.333 0.333	m Geisser n Epsilon 3 0.7501 3 0.8738 3 0.7048	DF1	Feldt Epsilon 0.8823 1.0000 0.8228	Statistic 0.42135 0.80788 0.55731	: :	22.23 5.49 15.04	5 0.0005 5 0.3593 5 0.0102
Source TOT_E_A_L*subject_n*Attack_T TOT_E_A_L*subject_n*Attack_T TOT_E_A_L*subject_n*Attack_T TOT_E_A_L*subject_n*Attack_T Box's Test for Equality of C Source TOT_E_A_L*subject_n*Attack_T	Ty*Valence_S Ty*Session Ty*Valence_S*Sess Covariance Matric			Epsilo: 0.333 0.333 0.333 0.333	Geisser Epsilon 3 0.7501 3 0.8738 3 0.7048 3 M	DF1 20	Feldt Epsilon 0.8823 1.0000 0.8228 M	Statistic 0.42135 0.80788 0.55731	: : : :	22.23 5.49 15.04 M	5 0.0005 5 0.3593 5 0.0102 5 M
Source ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T Box's Test for Equality of C Source ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T	Ty*Valence_S Ty*Session Ty*Valence_S*Sess Covariance Matrice Ty Ty*Valence_S			Epsilo: 0.333 0.333 0.333 0.333 Box's M 55.43	Geisser Bysilon 0.7501 0.7501 0.8738 0.7048 M		Feldt Epsilon 0.8823 1.0000 0.8228 M	Statistic 0.4213 0.80788 0.55731	Chi Sq	22.23 5.49 15.04 M	5 0.0005 5 0.3593 5 0.0102 5 M
Source ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T Box's Test for Equality of C Source ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T	Ty*Valence_S Ty*Session Ty*Valence_S*Sess Covariance Matric Ty Ty Ty*Valence_S Ty*Session	es		Bpsilo: 0.333 0.333 0.333 0.333 Box's M 55.43 M	Geisser Bysilon 0.7501 0.7501 0.8738 0.7048 M		Feldt Epsilon 0.8823 1.0000 0.8228 M	Statistic 0.4213 0.80788 0.55731	Chi Sq	22.23 5.49 15.04 M	5 0.0005 5 0.3593 5 0.0102 5 M
Source ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T Box's Test for Equality of C Source ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T	Ty*Valence_S Ty*Session Ty*Valence_S*Sess Covariance Matric Ty Ty Ty*Valence_S Ty*Session	es		Epsilo: 0.333 0.333 0.333 0.333 Box's M 55.43	Geisser Bysilon 0.7501 0.7501 0.8738 0.7048 M		Feldt Epsilon 0.8823 1.0000 0.8228 M	Statistic 0.4213 0.80788 0.55731	Chi Sq	22.23 5.49 15.04 M	5 0.0005 5 0.3593 5 0.0102 5 M
Source ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T Box's Test for Equality of C Source ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T	Ty*Valence_S Ty*Session Ty*Valence_S*Sess Covariance Matric Ty Ty Ty*Valence_S Ty*Session	es		Bpsilo: 0.333 0.333 0.333 0.333 Box's M 55.43 M	Geisser Bysilon 0.7501 0.7501 0.8738 0.7048 M		Feldt Epsilon 0.8823 1.0000 0.8228 M	Statistic 0.4213 0.80788 0.55731	Chi Sq	22.23 5.49 15.04 M	5 0.0005 5 0.3593 5 0.0102 5 M
Source ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T Box's Test for Equality of C Source ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T	Ty*Valence_S Ty*Session Ty*Valence_S*Sess Covariance Matric Ty Ty Ty*Valence_S Ty*Session	es		Bpsilo: 0.333 0.333 0.333 0.333 Box's M 55.43 M	Geisser Bysilon 0.7501 0.7501 0.8738 0.7048 M		Feldt Epsilon 0.8823 1.0000 0.8228 M	Statistic 0.4213 0.80788 0.55731	Chi Sq	22.23 5.49 15.04 M	5 0.0005 5 0.3593 5 0.0102 5 M
Source ToT E.A.L*subject_n*Attack_T ToT E.A.L*subject_n*Attack_T ToT E.A.L*subject_n*Attack_T ToT E.A.L*subject_n*Attack_T Box's Test for Equality of C Source ToT E.A.L*subject_n*Attack_T ToT E.A.L*subject_n*Attack_T ToT E.A.L*subject_n*Attack_T ToT E.A.L*subject_n*Attack_T	Ty*Valence_S Ty*Session Ty*Valence_S*Sess Covariance Matric Ty Ty Ty*Valence_S Ty*Session	ion		Bpsilo: 0.333 0.333 0.333 0.333 Box's M 55.43 M	Geisser Bysilon 0.7501 0.7501 0.8738 0.7048 M		Feldt Epsilon 0.8823 1.0000 0.8228 M	Statistic 0.4213 0.80788 0.55731	Chi Sq	22.23 5.49 15.04 M	5 0.0005 5 0.3593 5 0.0102 5 M
Source ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T Box's Test for Equality of C Source ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T	Ty*Valence_S Ty*Session Ty*Valence_S*Sess Covariance Matric Ty Ty Ty*Valence_S Ty*Session	ion	014, 10:11:55 AM	Bpsilo: 0.333 0.333 0.333 0.333 Box's M 55.43 M	Geisser Bysilon 0.7501 0.7501 0.8738 0.7048 M		Feldt Epsilon 0.8823 1.0000 0.8228 M	Statistic 0.4213 0.80788 0.55731	Chi Sq	22.23 5.49 15.04 M	5 0.0005 5 0.3593 5 0.0102 5 M
Source ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T Box's Test for Equality of C Source ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T Source Source ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T Source Source ToT_E_A_L*subject_n*Attack_T Source Source Source ToT_E_A_L*subject_n*Attack_T Source So	ty*Valence_S ty*Session ty*Valence_S*Sess Covariance Matric fy ty*Valence_S ty*Valence_S ty*Valence_S*Sess	ion	014, 10:11:55 AM	Bpsilo: 0.333 0.333 0.333 0.333 Box's M 55.43 M	Geisser Bysilon 0.7501 0.7501 0.8738 0.7048 M		Feldt Epsilon 0.8823 1.0000 0.8228 M	Statistic 0.4213 0.80788 0.55731	Chi Sq	22.23 5.49 15.04 M	5 0.0005 5 0.3593 5 0.0102 5 M
Source ToT E.A.L*subject_n*Attack_T ToT E.A.L*subject_n*Attack_T ToT E.A.L*subject_n*Attack_T ToT E.A.L*subject_n*Attack_T Box's Test for Equality of C Source ToT E.A.L*subject_n*Attack_T ToT E.A.L*subject_n*Attack_T ToT E.A.L*subject_n*Attack_T ToT E.A.L*subject_n*Attack_T	ty*Valence_S ty*Session ty*Valence_S*Sess Covariance Matric fy ty*Valence_S ty*Valence_S ty*Valence_S*Sess	ion	014, 10:11:55 AM	Bpsilo: 0.333 0.333 0.333 0.333 Box's M 55.43 M	Geisser Bysilon 0.7501 0.7501 0.8738 0.7048 M		Feldt Epsilon 0.8823 1.0000 0.8228 M	Statistic 0.4213 0.80788 0.55731	Chi Sq	22.23 5.49 15.04 M	5 0.0005 5 0.3593 5 0.0102 5 M
Source ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T Box's Test for Equality of C Source ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T Statistix 10.0 Repeated Measures AOV Table Source	Cy*Valence_S Cy*Session Cy*Valence_S*Sess Covariance Matric Cy Cy*Valence_S Cy*Valence_S Cy*Valence_S Cy*Session Cy*Valence_S*Sess for REL_SCORE DF	ss ss	Ms	Epsilo 0.333 0.333 0.333 0.333 Box's M 55.43 M M	P P		Feldt Epsilon 0.8823 1.0000 0.8228 M	Statistic 0.4213 0.80788 0.55731	Chi Sq	22.23 5.49 15.04 M	5 0.0005 5 0.3593 5 0.0102 5 M
Source ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T Box's Test for Equality of C Source ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T Source Statistix 10.0 Repeated Measures AOV Table Source P_Scor_L (A)	ty*Valence_S ty*Session ty*Valence_S*Sess Covariance Matrice ty ty*Valence_S ty*Session ty*Valence_S*Sess for REL_SCORE	es ion 3/5/2		Epsilo 0 . 333	n Geisser Epsilon 0.7501 0.8738 0.7048 M		Feldt Epsilon 0.8823 1.0000 0.8228 M	Statistic 0.4213 0.80788 0.55731	Chi Sq	22.23 5.49 15.04 M	5 0.0005 5 0.3593 5 0.0102 5 M
Source ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T Box's Test for Equality of C Source ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T Statistix 10.0 Repeated Measures AOV Table Source P_Scor_L_(A) subject_n(B)	Cy*Valence_S Cy*Session Cy*Valence_S*Sess Covariance Matric Cy Cy*Valence_S Cy*Valence_S Cy*Session Cy*Valence_S*Sess for REL_SCORE DF 2	ss 1.412E+09	MS 7.061E+08	Epsilo 0.333 0.333 0.333 0.333 Box's M 55.43 M M	P P		Feldt Epsilon 0.8823 1.0000 0.8228 M	Statistic 0.4213 0.80788 0.55731	Chi Sq	22.23 5.49 15.04 M	5 0.0005 5 0.3593 5 0.0102 5 M
Source ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T Box's Test for Equality of C Source ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T Statistix_10.0 Repeated Measures AOV Table Source P_Scor_L_(A) subject_n_(B) Error_A*B	Cy+Valence_S Cy+Session Cy+Valence_S*Sess Covariance Matric Cy Cy+Valence_S Cy+Valence_S Cy+Session Cy+Valence_S*Sess for REL_SCORE DF 2 21	ss 1.412E+09 8.746E+09	MS 7.061E+08 4.165E+08	Epsilo 0.333 0.333 0.333 0.333	P 0.2077		Feldt Epsilon 0.8823 1.0000 0.8228 M	Statistic 0.4213 0.80788 0.55731	Chi Sq	22.23 5.49 15.04 M	5 0.0005 5 0.3593 5 0.0102 5 M
Source ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T Box's Test for Equality of C Source ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T Source ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T Statistix 10.0 Repeated Measures AOV Table Source P_Scor_L (A) subject_n (B) Error A*B Attack_Ty (C)	In the control of the	3/5/20 3/5/20 5 1.412E+09 8.746E+09 4.995E+10	MS 7.061E+08 4.165E+08 1.665E+10	Epsilo	R Geisser Epsilon 0.7501 0.8738 0.7048 M F 2.16		Feldt Epsilon 0.8823 1.0000 0.8228 M	Statistic 0.4213 0.80788 0.55731	Chi Sq	22.23 5.49 15.04 M	5 0.0005 5 0.3593 5 0.0102 5 M
Source ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T Box's Test for Equality of C Source ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T Statistix 10.0 Repeated Measures AOV Table Source P_Scor_L (A) subject_n (B) Error A*B Attack_TY (C) A*C	Cy+Valence_S Cy+Session Cy+Valence_S*Sess Covariance Matric Cy Cy+Valence_S Cy+Valence_S Cy+Valence_S Cy+Session Cy+Valence_S*Sess for REL_SCORE DF 2 21 3 6	ss 1.412E+09 8.746E+09 4.995E+10 4.995E+10	MS 7.061E+08 4.165E+08 1.665E+10 8.307E+08	Epsilo 0.333 0.333 0.333 0.333	P 0.2077		Feldt Epsilon 0.8823 1.0000 0.8228 M	Statistic 0.4213 0.80788 0.55731	Chi Sq	22.23 5.49 15.04 M	5 0.0005 5 0.3593 5 0.0102 5 M
Source ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T Box's Test for Equality of C Source ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T Source P_Scor_L_(a) Statistix 10.0 Repeated Measures AOV Table Source P_Scor_L_(a) subject_n (B) Error A*B Attack_TY_(C) A*C Error A*B*C	Ey*Valence_S Ey*Session Ey*Valence_S*Sess Covariance Matrice Ey Ey*Valence_S Ey*Valence_S Ey*Valence_S*Sess For REL_SCORE DF 2 2 2 3 6 63	3/5/21 \$\$ 1.412E+09 8.746E+09 4.998E+10 4.984E+09 1.686E+10	MS 7.061E+08 4.165E+08 1.665E+10 8.307E+08 2.677E+08	Epsilo (0.333	P 0.2077		Feldt Epsilon 0.8823 1.0000 0.8228 M	Statistic 0.4213 0.80788 0.55731	Chi Sq	22.23 5.49 15.04 M	5 0.0005 5 0.3593 5 0.0102 5 M
Source ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T Box's Test for Equality of C Source ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T Statistix 10.0 Repeated Measures AOV Table Source P_Scor_L (A) subject_n (B) Error A*B Attack_TY (C) A*C	Cy+Valence_S Cy+Session Cy+Valence_S*Sess Covariance Matric Cy Cy+Valence_S Cy+Valence_S Cy+Valence_S Cy+Session Cy+Valence_S*Sess for REL_SCORE DF 2 21 3 6	ss 1.412E+09 8.746E+09 4.995E+10 4.995E+10	MS 7.061E+08 4.165E+08 1.665E+10 8.307E+08	Epsilo 0.333 0.333 0.333 0.333 0.333	P 0.2077 0.0000 0.0492		Feldt Epsilon 0.8823 1.0000 0.8228 M	Statistic 0.4213 0.80788 0.55731	Chi Sq	22.23 5.49 15.04 M	5 0.0005 5 0.3593 5 0.0102 5 M
Source ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T Box's Test for Equality of C Source ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T Statistix 10.0 Repeated Measures AOV Table Source P_Scor_L (A) subject_n (B) Error A*B Attack_TY (C) A*C Error A*B*C Valence_S (D)	CytValence_S CytSession CytValence_S*Sess Covariance Matric CytValence_S CytValence_S CytValence_S CytSession CytValence_S Covariance CytSession CytValence_S Covariance CytSession CytSession CytValence_S Covariance CytSession CytValence_S Covariance CytSession CytValence_S Covariance CytSession CytValence_S Covariance CytSession	\$\$ 1.412E+09 8.746E+09 4.995E+10 4.984E+09 1.686E+10 8.558E+08 7.274E+07 4.122E+09	MS 7.061E+08 4.165E+08 1.665E+10 8.307E+08 2.677E+08 8.558E+08 3.637E+07 1.963E+08	Epsilo 0.333 0.333 0.333 0.333 0.333	P 0.2077 0.0000 0.0492 0.8322		Feldt Epsilon 0.8823 1.0000 0.8228 M	Statistic 0.4213 0.80788 0.55731	Chi Sq	22.23 5.49 15.04 M	5 0.0005 5 0.3593 5 0.0102 5 M
Source ToT E A L*subject_n*Attack_T ToT_E A L*subject_n*Attack_T ToT_E A L*subject_n*Attack_T ToT_E A L*subject_n*Attack_T ToT_E A L*subject_n*Attack_T Box's Test for Equality of C Source ToT_E A L*subject_n*Attack_T ToT_E A L*subject_n*Attack_T ToT_E A L*subject_n*Attack_T ToT_E A L*subject_n*Attack_T Source Source P_Sour_L (a) Subject_n (B) Error A*B Attack_Ty (C) A*C Error A*B*C Valence_S (D) A*D Error A*B*D Session (E)	Cytvalence_Stytsession Ty*Valence_S*Sess Covariance Matrice Ty Ty*Valence_S Ty*Valence_S Ty*Session Ty*Valence_S*Sess For REL_SCORE DF 2 21 3 6 63 1 2 21 1	\$\$ 1.412E+09 8.746E+09 4.995E+10 4.984E+09 1.686E+10 8.558E+08 7.274E+07 4.122E+09 4.657E+09	MS 7.061E+08 4.165E+08 1.665E+10 8.307E+08 2.677E+08 8.558E+08 3.637E+07 1.963E+08 4.657E+09	Epsilo (0.333	P 0.2077 0.0000 0.0000 0.0492 0.8322 0.0003		Feldt Epsilon 0.8823 1.0000 0.8228 M	Statistic 0.4213 0.80788 0.55731	Chi Sq	22.23 5.49 15.04 M	5 0.0005 5 0.3593 5 0.0102 5 M
Source ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T Box's Test for Equality of C Source ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T Statistix 10.0 Repeated Measures AOV Table Source P_Scor_L (A) subject_n (B) Error A*B Attack_TY (C) A*C Error A*B*C Valence_S (D) A*D Error A*B*D Session (E) A*E	Cytvalence_S Cytvalence_S Cytvalence_S*Sess Covariance Matric Cy Cytvalence_S Cytvalence_S Covariance Matric Cy Cytvalence_S Cytvalence_S Cytvalence_S Cytvalence_S Cytvalence_S Cytvalence_S Covariance Cy Cytvalence_S Cytvalence_S Covariance Cy Cytvalence_S Covariance Cytvalence_	\$\$ 1.412E+09 8.746E+09 4.995E+10 4.984E+09 1.686E+10 8.558E+08 7.274E+07 4.122E+09 4.657E+09 5405356	MS 7.061E+08 4.165E+08 1.665E+10 8.307E+08 2.677E+08 8.558E+08 3.637E+07 1.963E+08 4.657E+09 2702678	Epsilo 0.333 0.333 0.333 0.333 0.333	P 0.2077 0.0000 0.0492 0.8322		Feldt Epsilon 0.8823 1.0000 0.8228 M	Statistic 0.4213 0.80788 0.55731	Chi Sq	22.23 5.49 15.04 M	5 0.0005 5 0.3593 5 0.0102 5 M
Source ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T Box's Test for Equality of C Source ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T Statistix 10.0 Repeated Measures AOV Table Source P_Scor_L (A) subject_n (B) Error A*B Attack_Ty (C) A*C Error A*B*C Valence_S (D) A*D Error A*B*D Session (E) A*E Error A*B*E Error A*B*E	Cytyvalence_Styvsession Ty*Valence_S*Sess Covariance Matric Cytyvvalence_S Ty*Valence_S Ty*Session Ty*Valence_S*Sess for REL_SCORE DF 2 21 3 6 63 1 2 21 1 2 21	\$\$ 1.412E+09 8.746E+09 4.995E+10 4.984E+09 1.686E+10 8.558E+08 7.274E+07 4.122E+09 4.657E+09 5405356 5.319E+09	MS 7.061E+08 4.165E+08 1.665E+10 8.307E+08 2.677E+08 8.55BE+08 3.637E+07 1.963E+08 4.657E+09 2702678 2.533E+08	Epsilo (0.333	P 0.2077 0.0000 0.0100 0.0492 0.8322 0.0003 0.9894		Feldt Epsilon 0.8823 1.0000 0.8228 M	Statistic 0.4213 0.80788 0.55731	Chi Sq	22.23 5.49 15.04 M	5 0.0005 5 0.3593 5 0.0102 5 M
Source ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T Box's Test for Equality of C Source ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T Statistix 10.0 Repeated Measures AOV Table Source P_Scor_L (A) subject_n (B) Error A*B* Attack_Ty (C) A*C Error A*B*C Valence_S (D) A*D Error A*B*D Session (E) A*E Error A*B*E C*D	Cytvalence_S Cytvalence_S Covariance Matric Cy Cytvalence_S*Sess Covariance Matric Cy Cytvalence_S Covariance Matric Cy Cytvalence_S Covariance Cytvalence_S Covarian	\$\$\$ 1.412E+09 8.746E+09 4.995E+10 4.984E+09 1.686E+10 8.558E+08 7.274E+07 4.122E+09 4.657E+09 5.405366 5.319E+09 3.174E+08	MS 7.061E+08 4.165E+08 1.665E+10 8.307E+08 2.677E+08 8.558E+08 3.637E+07 1.963E+08 4.657E+09 2702678 2.533E+08 1.058E+08	Epsilo (0.333	P 0.2077 0.0000 0.0100 0.0492 0.0832 0.003 0.9894 0.6582		Feldt Epsilon 0.8823 1.0000 0.8228 M	Statistic 0.4213 0.80788 0.55731	Chi Sq	22.23 5.49 15.04 M	5 0.0005 5 0.3593 5 0.0102 5 M
Source ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T Box's Test for Equality of C Source ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T ToT_E_A_L*subject_n*Attack_T Statistix 10.0 Repeated Measures AOV Table Source P_Scor_L (A) subject_n (B) Error A*B Attack_Ty (C) A*C Error A*B*C Valence_S (D) A*D Error A*B*D Session (E) A*E Error A*B*E Error A*B*E	Cytyvalence_Styvsession Ty*Valence_S*Sess Covariance Matric Cytyvvalence_S Ty*Valence_S Ty*Session Ty*Valence_S*Sess for REL_SCORE DF 2 21 3 6 63 1 2 21 1 2 21	\$\$ 1.412E+09 8.746E+09 4.995E+10 4.984E+09 1.686E+10 8.558E+08 7.274E+07 4.122E+09 4.657E+09 5405356 5.319E+09	MS 7.061E+08 4.165E+08 1.665E+10 8.307E+08 2.677E+08 8.55BE+08 3.637E+07 1.963E+08 4.657E+09 2702678 2.533E+08	Epsilo (0.333	P 0.2077 0.0000 0.0100 0.0492 0.8322 0.0003 0.9894 0.6582 0.3349		Feldt Epsilon 0.8823 1.0000 0.8228 M	Statistic 0.4213 0.80788 0.55731	Chi Sq	22.23 5.49 15.04 M	5 0.0005 5 0.3593 5 0.0102 5 M

Error A*B*C*D	63	1.239E+10	1.967E+08		
C*E	3	4.996E+08	1.665E+08	0.64	0.5912
A*C*E	6	4.283E+09	7.138E+08	2.75	0.0195
Error A*B*C*E	63	1.636E+10	2.597E+08		
D*E	1	1.748E+09	1.748E+09	7.40	0.0128
A*D*E	2	3.110E+08	1.555E+08	0.66	0.5279
Error A*B*D*E	21	4.959E+09	2.361E+08		
C*D*E	3	1.786E+09	5.953E+08	4.89	0.0041
A*C*D*E	6	1.463E+09	2.438E+08	2.00	0.0786
Error A*B*C*D*E	63	7.675E+09	1.218E+08		
Total	383				
Note: SS are marginal (type	III) sums of sq	lares			
Grand Mean				-8	467.4
CV(P_Scor_L*subject_n)				-2	41.02
CV(P_Scor_L*subject_n*Attack	c_Ty)			-1:	93.22
CV(P_Scor_L*subject_n*Valence	ce_S)			-1	65.45
CV(P_Scor_L*subject_n*Session	on)			-1:	87.95
CV(P_Scor_L*subject_n*Attack	<pre>c_Ty*Valence_S)</pre>			-1	65.65
CV(P_Scor_L*subject_n*Attacl	(_Ty*Session)			-1:	90.31
CV(P_Scor_L*subject_n*Valence	ce_S*Session)			-1	81.48
CV(P_Scor_L*subject_n*Attacl	<pre>c_Ty*Valence_S*Se</pre>	ession)		-1	30.35

WARNING: The total sum of squares is too small to continue. The dependent variable may be nearly constant.

Greenhouse-Geisser Corrected P-Values for Nonsphericity

		Minimum	Greenhouse Geisser	Huynh Feldt
		Epsilon	Epsilon	Epsilon
Source	F	P	P	P
Attack_Ty	62.20	0.0000	0.0000	0.0000
P_Scor_L*Attack_Ty	3.10	0.0659	0.0211	0.0133
Attack_Ty*Valence_S	0.54	0.4715	0.6129	0.6499
P_Scor_L*Attack_Ty*Valence_S	1.17	0.3304	0.3381	0.3356
Attack_Ty*Session	0.64	0.4322	0.5494	0.5803
P_Scor_L*Attack_Ty*Session	2.75	0.0870	0.0335	0.0227
Attack_Ty*Valence_S*Session	4.89	0.0383	M	M
P_Scor_L*Attack_Ty*Valence_S*Session	2.00	0.1601	M	M

Sphericity Assumption Tests

	Minimum	Geisser	Feldt	Mauchly's		
Source	Epsilon	Epsilon	Epsilon	Statistic	Chi Sq	DF
P						
P_Scor_L*subject_n*Attack_Ty	0.3333	0.7301	0.8961	0.30486	23.43	5
	0.0003					
P_Scor_L*subject_n*Attack_Ty*Valence_S	0.3333	0.7702	0.9534	0.65777	8.26	5
	0.1424					
P_Scor_L*subject_n*Attack_Ty*Session	0.3333	0.7530	0.9288	0.60855	9.80	5
	0.0812					
P_Scor_L*subject_n*Attack_Ty*Valence_S*Session	0.3333	M	M	M	M	5

Greenhouse

Huynh

LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS

AL Attack Location (None, Tracking, Fuel/Resource Management, Score Display)

BFI Big Five Inventory

CRT Choice Reaction Time test

D5-effects deceive, deny, disrupt, degrade and destroy

ECG Electrocardiogram
EDA Electrodermal Activity
EOG Electrooculogram
EMG Electromyogram

FFI/PI-R Five-Factor Inventory/Personality Inventory-Revised

HRV Heart Rate Variability IBI Inter-Beat-Interval

IED Intra/Extra-Dimensional shift ability test IPIP International Personality Item Pool

IRB Institutional Review Board MATB Multi-Attribute Task Battery

NASA National Aeronautics and Space Agency NEO Neuroticism, Extraversion, Openness

PANAS-X Positive and Negative Affect Schedule - Expanded

PPG Photoplethysmogram
PTT Pulse Transit Time
RSP Respiration Rate
SA Situational Awareness
SKT Skin Temperature

SOC Stockings of Cambridge test

STEM Situational Test of Emotion Management

TDA Trait Descriptive Adjectives TLX NASA Task Load Index

VV Video Valence (Positive or Negative)